Why use Multi-Stage Amplifiers?

- Single-stage amplifier:
 - Generally have to trade between swing and gain
 - (Need cascodes and/or large V_{min} for current sources)

- Multi-stage amplifier:
 - Higher gain without sacrificing swing
 - (Gain-boosted cascode is multi-stage amplifier in disguise)

- Challenge: stability!

Compensation Techniques

- Many options – best one depends on situation at hand

 - Look at a few general categories:
 - Narrowbanding
 - Wideband input stage (pre-amp)
 - Miller

Stability for Simple 2-Stage Amp

- Two closely spaced poles - is this circuit stable?

Narrowbanding

- Narrowbanding
 - Lower one of the poles
 - Or introduce a new one

 - Stability OK, but (feedback) bandwidth often low
 - Example: offset cancellation
Pre-amp

- Build a pre-amp with bandwidth much higher than 2nd stage
 - Usually limits achievable pre-amp gain

Phase Margin Engineering

\[a_k = \frac{F}{C \omega} \]

- Higher K \(\rightarrow \) higher \(C \)

\[C \geq KFC \frac{g_{m2}}{g_{m1}} \]

- For fixed \(C_m \), larger \(C_2 \) lowers phase margin

\[\frac{z}{\omega} = \frac{1}{g_{m2}} \frac{g_{m1}}{C_2} \]

- Zero can add significant phase lag
 - Unless \(g_{m2} > g_{m1} \)

Nulling Resistor

\[z \approx \frac{1}{g_{m2}} \left(\frac{1}{R} - \frac{1}{R} \right) C_2 \]

- \(R \) limits feedforward current at high frequency
 - Pushes feedforward zero to higher frequency
 - Adds new pole \(p_3 \)

Nulling Resistor Implementation
Cascode Compensation (Ahuja)

- No RHP zero
- But cost in power can be high
 - \((I_2\) needs to slew \(C_C))\)

Cascode Compensation (Ribner)

Noise Analysis cont’d

\[
V_n = \frac{1}{F_{B,\omega}} \left(\frac{1}{\omega Q} \right) \left(\frac{\omega Q}{\omega Q + \omega_0^2} \right) \left(\frac{\omega_0^2}{\omega_0^2} \right)
\]

with

\[
\omega_0^2 = \frac{F_{B,\omega} S_{\omega}}{C(C + C_0)}
\]

\[
\omega Q = \frac{F_{B,\omega} S_{\omega}}{C_1}
\]

Total Noise at Output

\[
V_{n1} = \frac{k T}{C_F \gamma} \left(\frac{k T}{C_F (C_0 + C_L)} \right) \gamma
\]

\[
V_{n2} = \frac{k T}{C_F} \gamma \left(\frac{F C_0}{C_0+C_L} \right)
\]

- Noise from first stage dominates
- Noise capacitor: \(C_C\) (NOT \(C_L\))

Noise Analysis

- Need a simplified model:

2-Stage CMFB
2-Stage CMFB