Offset Cancellation Overview

- Two main ideas/approaches
 - Modulate and/or filter offset so that it is outside of signal band
 - CDS (auto-zeroing)
 - Chopping (synch. detection, DEM)
 - Inject a DC signal that opposes the offset
 - Trimming
 - Often digitally controlled (especially for comparators)

Filtering/Modulating Offset

- General idea:
 - Put elements around the amplifier that treat offset differently than signal
- CDS:
 - Configure amplifier so that offset is (approx.) differentiated
- Chopping:
 - Modulate offset to frequencies beyond signal band, then filter it out

CDS #1: Output Offset Cancellation

- Relatively insensitive to switch errors
- Storing amplified offset
- But, what happens if gain is large?

\[V'_c = -AV'_m \]
\[\begin{align*}
 V'_m &= AD(V'_c - V'_o) - V'_c \\
 &= ADV'_c
\end{align*} \]

CDS #2: Input Offset Cancellation

Multistage Cancellation

- Open switches left to right
- Errors from \(S_1 \) ... \(S_{n-1} \) cancelled by final stage
- Application: continuous time comparators
Auxiliary Amplifier Offset Cancellation

CDS and Flicker Noise

Aux. Amplifier Example

Flicker Noise Analysis

Aux. Amplifier Implementation

Flicker Noise Frequency Response

\(V_{in} = V_{in} - V_{out} \)

Laplace Transform

\[V_{in}(s) = \frac{F(s) + V_{in}(s) - V_{out}(s) \cdot s - \frac{1}{2}}{s} \]

Delay by \(t_d \) \(\rightarrow e^{-\frac{s}{t_d}} \)

\[V_{out}(s) = V_{in}(s) \left(1 - e^{-\frac{s}{t_d}} \right) \]

\(H(s) = 1 - e^{-\frac{s}{2}} \)

\(H(s) = 1 - e^{-\frac{s}{2}} \)

\(H(s) = 1 - \cos \frac{\pi s}{2} + j \sin \frac{\pi s}{2} \)

\(H(s) = 1 - 2 \cos \frac{\pi s}{2} + \cos^2 \frac{\pi s}{2} + \sin^2 \frac{\pi s}{2} \)

\(H(s) = 2 \left(1 - \cos \frac{\pi s}{2} \right) \)

\(H(s) = 2 \sin^2 \frac{\pi s}{2} \)

\(H(s) = 2 \sin \frac{\pi s}{2} \cdot \frac{\pi s}{T} \)
Flicker Noise Spectrum

- Flicker noise is differentiated
- As is thermal noise
- Noise removed at low freq.
- But amplified at “high” freq.
- Noise above f_s/2 folds to baseband

Offset Trimming

Chopping

- Inner chopper at high freq. to remove 1/f noise
- Outer chopper at low frequency to minimize “spiking” and remove residual offset from inner chopper.

Digital Trimming

Nested Chopper Amplifier

Comparator Trimming
Trim Implementation Issues

- Infinite number of ways to introduce digitally controlled offset
 - People have tried just about all of them

- Key issues:
 - Power overhead
 - Circuit Imbalance
 - Effective resolution
 - Area overhead

Comparator Trim Schemes

Pre-Amp Trim