Why Modeling?
- Analog circuits more sensitive to detailed transistor behavior
 - Precise currents, voltages, etc. matter
 - Digital circuits have much larger "margin of error"
- Models allow us to reason about circuits
 - Provide window into the physical device and process
 - "Experiments" with SPICE much easier to do

Square Law Model Assumptions
- Charge density determined only by vertical field
- Drift velocity set only by lateral field
- Neglect diffusion currents ("magic" \(V_{th} \))
- Constant mobility
- And many more...

Levels of Abstraction
- Best abstraction depends on questions you want to answer
- Digital functionality:
 - MOSFET is a switch
- Digital performance:
 - MOSFET is a current source and a switch
- Analog characteristics:
 - MOSFET described by BSIM with 100’s of parameters?
 - MOSFET described by measurement results?

A Real Transistor
- Ultra-thin Gate Dielectric
- Direct Tunneling Current
- Quantum Effects
- Pocket Implant
 - Reverse short-channel effect
 - Slower output resistance scaling with \(L \)
- Short Channel Effects
 - Velocity Saturation and Overshoot
 - Source-end Velocity Limit
- S/D Engineering
 - S/D resistances
 - S/D leakage
- Retrograde Doping
 - Body effect
 - Body effect
To Make Matters Worse…

- Run-to-run parameter variations:
 - E.g. implant doses, layer thickness, dimensions
 - Affect V_{TH}, μ, C_{ox}, R...

- In SPICE use device “corners”: nominal / slow / fast parameters (tt, ss, ff)
 - E.g. fast: low V_{TH}, high μ, high C_{ox}, low R
 - Combine with supply & temperature extremes
 - Pessimistic but numerically tractable
 - improves chances for working Silicon

Corner example: V_{TH}

- Corners just shift V_{th}
 - Probably not real
 - (PMOS doesn’t look real anyways)

- Variations probably bigger than reality too
 - Fab wants you to buy everything they make

Now What?

- Rely purely on simulator to tell us how devices behave?
 - Models not always based on real measurements
 - Model extraction is hard
 - Models inherently compromise accuracy for speed

- Need to know about important effects
 - So that know what to look for
 - Model might be wrong, or doesn’t automatically include some effects
 - E.g., gate leakage

I_D: Velocity Saturation

- Drift velocity initially increases linearly with field
- Eventually carriers hit a “speed limit”
- In the limit, $I_D \propto (V_{GS} - V_{th})$
I_d: Vertical Field Mobility Reduction

- Mobility actually depends on gate field
 - “Hard to run when there is wind blowing you sideways (into a wall)”

- More technical explanation:
 - E-field pushes carriers close to the surface
 - Enhanced scattering lowers mobility

\[
\mu = \frac{\mu_0}{1 + \theta(V_{GS} - V_T) + \theta_B V_{SB}}
\]

I_d: Weak Inversion Current

- Current set by diffusion – borrow BJT equation:

\[
I_{ds} = \frac{W}{L} I_{ds,0} \exp \left(\frac{V_{GS} - V_T}{\frac{V_{TH}}{n}} \right) \left(1 - \frac{V_{DS}}{V_{TH}} \right)
\]

I_d: Sub-Threshold Region

- Current doesn’t really go to 0 at \(V_{GS} = V_{th} \)

- Lateral BJT:

I_d: Operating in Weak Inversion

- Usually considered “slow”:
 - “large” \(C_{ds} \) for “little” current drive (see later)

- But, weak (or moderate) inversion becoming more common:
 - Low power
 - Submicron L means “high speed” even in weak inversion

- Not well modeled, matching poor:
 - \(V_{th} \) mismatch amplified exponentially
 - Avoid in mirrors

I_d: Weak Inversion Channel Potential

- “Base” controlled through capacitive divider

\[\delta V_B = \frac{C_{ov}}{C_{ov} + C_{dp}} \delta V_d \]

- Non-ideality factor of channel control \(n > 1 \):

\[n = 1 + \frac{C_{dp}}{C_{ov}} = 1 + \frac{\epsilon_{ov} \epsilon_{dp}}{\epsilon_{ov} \epsilon_{dp}}\]

- \(n \) varies somewhat with bias – const. approx. usually OK

I_d: Moderate Inversion

- Moderate inversion: both drift and diffusion contribute to the current.

- Closed form equations for this region don’t really exist.
Output Resistance: CLM

- “Channel Length Modulation”
 - Depletion region varies with V_{DS}
 - Changes effective channel length

- If perturbation is small:

$$I \approx \frac{1}{L} \delta L(V_{ds}) \approx \frac{1}{L} \left(1 + \frac{\delta L(V_{ds})}{L}\right) I_{ds0} = (1 + \lambda V_{ds})$$

Output Resistance Mechanisms

- All effects active simultaneously
- CLM at relatively low fields
- DIBL dominates for high fields
- SCBE at very high fields

Output Resistance: DIBL

- “Drain Induced Barrier Lowering”

- Drain controls the channel too
 - Charge gets imaged – lowers effective V_{th}
 - Model with $V_{th} = V_{th0} - \eta V_{DS}$

Output Resistance: SCBE

- “Substrate Current Body Effect”
- At high electric fields, get “hot” electrons
 - Have enough energy to knock electrons off Si lattice (impact ionization)

- Extra $e^- - h^+$ pairs – extra (substrate) current
 - Models usually empirical

$$I_{SCE} = \frac{1}{B_i} \frac{B_i}{V_{th0}} \exp \left(\frac{B_i}{V_{DS} - V_{th0}}\right)$$

Comprehensive Model: BSIM

- **Berkeley Short-channel IGFET Model (BSIM)**
 - Industry standard model for modern devices
 - BSIM3v3 is model for this course

- Typically 40-100+ parameters
 - Advanced software and expertise needed even to perform extraction

Modeling: Now What?

- No “simple”, convenient hand model...
 - r_i is key for gain, but really hard to model
 - Missing important regions such as moderate inversion

- Hand models really best to build intuition

- But for design (i.e., how to choose W, L, etc.):
 - Will learn how to use the simulator as a “calculator”