Simplest Single-Ended OTA
DC Input/Output, Gain

Small Signal:

\[a_{vo} = \frac{dV_{out}}{dV_{in}} \]

Large Signal:

\[A_{vo} = \frac{V_{out} - V_{out.o}}{V_{in} - V_{in.o}} \]
Frequency Response

Noise

\[
\frac{v_{eq}^2}{\Delta f} = 4kT \gamma \frac{1}{g_{m1}} \left(g_{m1} + g_{m2} \right)
\]

\[
= 4kT \gamma \frac{1}{g_{m1}} \left(1 + \frac{g_{m2}}{g_{m1}} \right)
\]

\[
= 4kT \gamma \frac{1}{g_{m1}} \left(1 + \frac{V_1^*}{V_2^*} \right)
\]

\[
\Delta f
\]

EECS240 Lecture 10 6
Differential Input?

- Why use a differential input?
 - Diff. version has extra device(s) – more power, noise, etc.
- Real reason is systematic offset
 - All voltages are relative
 - Inherent asymmetry to get single-ended V_{out}
 - “common-mode” sensitivity

Fully Differential Circuits

- Fully differential circuits: complete symmetry
 - $V_{id} = V_{i+} - V_{i-}$ \quad $V_{ic} = (V_{i+} + V_{i-})/2$
 - $V_{od} = V_{o+} - V_{o-}$ \quad $V_{oc} = (V_{o+} + V_{o-})/2$
- Still need to be careful with common mode
Fully Differential Amplifier Gains

Input Output

\[V_{id} \rightarrow A_{dm} \rightarrow V_{od} \]
\[V_{ic} \rightarrow A_{dcm} \rightarrow V_{oc} \]

\[A_{cm} \]

PSRR, CMRR, …

\[A_{dm} = \frac{v_{od}}{v_{id}} \rightarrow \infty \]
\[A_{vdd} = \frac{v_{od}}{v_{DD}} \rightarrow 0 \]

\[CMRR = \left| \frac{A_{dm}}{A_{vdd}} \right| \rightarrow \infty \]

\[A_{cm} = \frac{v_{oc}}{v_{ic}} \rightarrow 0 \]
\[A_{vss} = \frac{v_{od}}{v_{SS}} \rightarrow 0 \]

\[PSRR_{vDD} = \left| \frac{A_{dm}}{A_{vDD}} \right| \rightarrow \infty \]
\[PSRR_{vSS} = \left| \frac{A_{dm}}{A_{vSS}} \right| \rightarrow \infty \]

- All “terminals” are inputs
 - May not be a node in the circuit – could be e.g. temperature

- Typical metrics: CMRR, PSRR
 - Careful with how you use these
CMRR Example

Differential Input Stage Options

(a) \[V_{i+} \quad V_{i-} \]

(b) \[V_{i+} \quad V_{i-} \quad \downarrow \]

(c) \[V_{i+} \quad V_{i-} \quad \uparrow \]