Delayed Precharge
 Domino Properties

- Logic evaluation propagates as falling dominoes
- Evaluation period determines the logic depth
- The nodes must be precharged during the precharge period (can limit the minimum size of PMOS)
- Inputs must be stable (or have only one rising transition) during the evaluation
- Gates are ratioless
- Restorer is ratioed
- All the gates are non-inverting
- Only one transition to be optimized
Multiple-Output Domino (MODL)

F = F_1F_2

Common subexpressions

Hwang, Fisher, ISSCC’88

Lookahead Adder
Lookahead Adder

4-bit group generate

4-bit group propagate

Compound Domino

Houston et al,
U.S. Pat. 5,015,882
May 1991.
Clock-Delayed Domino

Possible implementation of delay block

No need for inversion
Used in IBM's 1GHz integer processor (ISSCC'98)
NTP Domino

Noise-tolerant precharge (NTP)

\[\phi \]

(c) Yamada, ICCD'95

Output-Prediction Logic

Inverting logic:

\[\text{gate1} \quad 1 \quad \text{gate2} \quad 0 \quad \text{gate3} \quad 1 \quad \text{gate4} \quad 0 \]

Output-prediction logic:

\[\text{gate1} \quad 1 \quad \text{gate2} \quad 1 \quad \text{gate3} \quad 1 \quad \text{gate4} \quad 1 \]

McMurchie, et al, ICCD'2000
Output-Prediction Logic

NOR3:

Clocking:

NOR3 chain of 10:

Clock separation:

McMurchie, et al, ICCD'2000
np-CMOS

Only 1→0 transitions allowed at inputs of PUN
Goncavles, De Man JSSC 6/83
Friedman, Liu, JSSC 4/84

np-CMOS

One-bit adder

\[C_0 = AB + AC_1 + BC_1 \]
\[S = A \oplus B \oplus C \]
NORA Logic

UC Berkeley EE 241
B. Nikolić

NORA Logic

UC Berkeley EE 241
B. Nikolić
Fig. 7. Precharge racefree—precharge signal altered by the inputs:

\[\begin{align*}
N1: & \quad 1 \rightarrow 0 \quad \phi = 1 \rightarrow \text{impossible}^* \\
N2: & \quad 0 \rightarrow 1 \quad \phi = 0 \\
N1: & \quad 0 \rightarrow 1 \quad \phi = 0 \rightarrow \text{impossible}^* \\
N2: & \quad 1 \rightarrow 0 \quad \phi = 1
\end{align*} \]

Fig. 8. Input variation racefree—precharge signal kept by the inputs.
NORA Logic

Fig. 9. Input variation racefree—sequence of dynamic blocks with pre-charge signals kept by the inputs:

<table>
<thead>
<tr>
<th>n-type</th>
<th>p-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NX: 1 \to 0$</td>
<td>$NX: 0 \to 1$</td>
</tr>
<tr>
<td>$\phi = 1 \to$ impossible*</td>
<td>$\bar{\phi} = 1 \to$ impossible*</td>
</tr>
<tr>
<td>$NY: 0 \to 1$</td>
<td>$NY: 1 \to 0$</td>
</tr>
<tr>
<td>$\phi = 0$</td>
<td>$\bar{\phi} = 1$</td>
</tr>
</tbody>
</table>

NORA Logic

Fig. 10. Input variation racefree—even inversions between two C^2MOS latch stages:

"1" modification

$N1: 1 \to 0$	$N1: 0 \to 1$
$\phi = 1 \to$ impossible*	$\bar{\phi} = 0 \to$ impossible*
$N2, NX: 0 \to 1$	$N2, NX: 1 \to 0$
$\phi = 0$	$\bar{\phi} = 1$

"0" modification
NORA Logic

Fig. 11. Precharge racefree—even inversions between the C2MOS output stage and the last dynamic block.

Fig. 12. Input variation racefree—even inversions between the C3MOS input stage and one dynamic block.

Zipper Logic

Lee, Szeto, Circuits and Devices 5/86
Zipper Logic

Type I:

Type II:

Clock and Data Precharged Logic

Domino

CDPD

Yuan, Svensson, Larson, Electronics Letters, 12/93
Clock and Data Precharged Logic

Logic chains

Differential (Dual Rail) Domino

Dynamic CVSL (Clock CVSL) - Heller et al, ISSCC’84
Dual-Rail Domino