Latch vs. Flip-Flop

- **Latch** stores data when clock is low
- **Flip-Flop** stores data when clock rises

\[\text{Latch: } \quad \begin{array}{c}
D \quad Q \\
\text{Clk}
\end{array} \]

\[\text{Flip-Flop: } \quad \begin{array}{c}
D \quad Q \\
\text{Clk}
\end{array} \]
Latch Pair vs. Flip-Flop

- Performance metrics
- Delay metrics
 - Delay penalty
 - Clock skew penalty
 - Inclusion of logic
 - Inherent race immunity
- Power/Energy Metrics
 - Power/energy
 - PDP, EDP
- Design robustness

Latches

Negative latch (transparent when CLK= 0) Positive latch (transparent when CLK= 1)
Latches

Transmission-Gate Latch

C2MOS Latch

(a) The transparent high latch (THL) (b) The transparent low latch (TLL)

(c) Timing waveforms for the THL

Pipelined Logic using \(\text{C}^2\text{MOS} \)

\[\text{VDD} \]

\[\text{F} \]

\[\text{G} \]

\[\text{VDD} \]

NORA CMOS

What are the constraints on F and G?

TSPC - True Single Phase Clock Logic

\[\text{VDD} \]

\[\phi \]

\[\text{In} \]

\[\text{Out} \]

\[\phi \]

Precharged N Precharged P Non-precharged N Non-precharged P
TSPC - True Single Phase Clock Logic

Including logic into the latch

Inserting logic between latches

Doubled TSPC Latches

Doubled n-TSPC latch Doubled p-TSPC latch
Master-Slave TSPC Flip-flops

(a) Positive edge-triggered D flip-flop

(b) Negative edge-triggered D flip-flop

(c) Positive edge-triggered D flip-flop using split-output latches

DEC Alpha 21064

Dobberpuhl, JSSC 11/92
DEC Alpha 21064

Integrating logic into latches
- Reducing effective overhead
DEC Alpha 21164

L1 Latch

L2 Latch

L1 Latch with logic

Flip-Flop as a Latch Pair
Latch vs. Flip-Flop

(a) Latch
(b) Flip-flop

Requirements in the Flip-Flop Design

- High speed of operation:
 - Small Clk-Output delay
 - Small setup time
 - Small hold time → Inherent race immunity
- Low power
- Small clock load
- High driving capability
- Integration of the logic into flip-flop
- Multiplexed or clock scan
- Robustness
- Crosstalk insensitivity
 - Dynamic/high impedance nodes are affected
Sources of Noise

1. Noise on input
2. Leakage
3. \(\alpha\)-Particle and cosmic rays
4. Unrelated signal coupling
5. Power supply ripple

Gate Isolation
Flip-Flop Robustness

- Robustness of the storage node
- Input isolation
- Data stored statically, max resistance limit
- Min capacitance limit
- Preventing exposure

Types of Flip-Flops

Latch Pair
(Master-Slave)

Pulse-Triggered Latch
Flip-Flop Delay

- Sum of setup time and Clk-output delay is the only true measure of the performance with respect to the system speed
- \(T = T_{\text{Clk-Q}} + T_{\text{Logic}} + T_{\text{setup}} + 2T_{\text{skew}} \)

![Diagram of flip-flop delay](image)

Delay vs. Setup/Hold Times

![Graph showing delay vs. setup/hold times](image)
Master-Slave Latches

- Positive setup times
- Two clock phases:
 - distributed globally
 - generated locally
- Small penalty in delay for incorporating MUX
- Some circuit tricks needed to reduce the overall delay

Case 1: PowerPC 603 (Gerosa, JSSC 12/94)
T-G Master-Slave Latch

Feedback added for static operation
Unbuffered input
input capacitance depends on the phase of the clock
over-shoot and under-shoot with long routes
wirelength must be restricted at the input
Clock load is high
Low power
Small clk-output delay, but positive setup

Master-Slave Latches

Case 2: C²MOS

Feedback added for static operation
Locally generated clock
Poor driving capability
Robustness to clock slope
Pulse-Triggered Latches

First stage is a pulse generator
generates a pulse (glitch) on a rising edge of the clock
Second stage is a latch
captures the pulse generated in the first stage
Pulse generation results in a negative setup time
Frequently exhibit a soft edge property

Note: power is always consumed in the pulse generator

Case 1: Hybrid Latch Flip-Flop, AMD K-6
Partovi, ISSCC’96
HLFF Operation

1-0 and 0-1 transitions at the input with 0ps setup time

Hybrid Latch Flip-Flop

Flip-flops features:
- single phase clock
- edge triggered, on one clock edge

Latch features: Soft clock edge property
- brief transparency, equal to 3 inverter delays
- negative setup time
- allows slack passing
- absorbs skew

Hold time is comparable to HLFF delay
- minimum delay between flip-flops must be controlled
- Fully static
- Possible to incorporate logic
Soft Edge Property

Also known as cycle borrowing, or slack passing
In latch based designs, if longest path datum reaches latch before its setup time, clock skew does not affect cycle time
If longest path reaches latch close to setup time, clock skew is directly subtracted from cycle time
Flip-flop presents a ‘hard’ edge - no slack passing.
HLFF is a compromise - has a controlled transparency period, that can absorb skew
Price is paid in the hold time

Hybrid Latch Flip-Flop

Skew absorption

Partovi et al, ISSCC’96
Pulse-Triggered Latches

Case 2: AMD K-7

Inputs are dynamically received
Clock edge is hard

Pulse generator is dynamic, cross-coupled latch is added for robustness. Loses soft edge on rising transition
Latch has one transistor less in stack - faster than HLFF, but 1-1 glitch exists
Small penalty for adding logic

Pulse-Triggered Latches

Case 3: Semi-Dynamic Flip-Flop (SDFF), Sun UltraSparc III, Klass, VLSI Circuits'98

Pulse generator is dynamic, cross-coupled latch is added for robustness. Loses soft edge on rising transition
Latch has one transistor less in stack - faster than HLFF, but 1-1 glitch exists
Small penalty for adding logic
Pulse-Triggered Latches

Case 3: 7474, Texas Instruments’64

Karnaugh maps for signals S and R

7474
Pulse-Triggered Latches

First stage is a sense amplifier, precharged to high, when $\text{Clk} = 0$
After rising edge of the clock sense amplifier generates the pulse on S or R
The pulse is captured in S-R latch
Cross-coupled NAND has different propagation delays of rising and falling edges

Sense Amplifier-Based Flip-Flop

The first stage is unchanged sense amplifier
Second stage is sized to provide maximum switching speed
Driver transistors are large
Keeper transistors are small and disengaged during transitions
Sense Amplifier-Based Flip-Flop

Flip-Flop Performance Comparison

Total power consumed
internal power
data power
clock power

Measured for four cases
no activity (0000... and 1111...)
maximum activity (0101010...)
average activity (random sequence)

Delay is (minimum $D-Q$)
$Clk-Q$ + setup time

Stojanovic, Oklobdzija JSSC 4/99

UC Berkeley EE241 B. Nikolić

UC Berkeley EE241 B. Nikolić
Flip-Flop Performance Comparison

Delay vs. power comparison of different flip-flops
Flip-flops are optimized for speed with output transistor sizes limited to 7.5µm/4.3 µm
Total transistor gate width is indicated

Energy Consumption

- Always consume
 - $E_{\text{CLK}} = E_{0,0} = E_{1,1}$
 - When $Q : 1-0$ or $0-1$
 - $E_{\text{int}} = E_{1,0} - E_{0,0}$
 - Only when $Q : 0-1$
 - $E_{\text{ext}} = E_{0,1} - E_{1,0}$

- Non-inverting Flops:
 - $E_{\text{avg}} = E_{\text{CLK}} + \alpha \cdot E_{\text{ext}} + (1 - \alpha) \cdot E_{\text{int}}$

- Inverting Flops:
 - $E_{\text{avg}} = E_{\text{CLK}} + (1-\alpha) \cdot E_{\text{ext}} + \alpha \cdot E_{\text{int}}$

(α - probability of $D : 0-1$)
Energy Dissipation

Comparison of Master Slave and Pulse-Triggered Flip-Flops

Resized for Energy/Delay

Local Clock Gating

Data-Transition Look-Ahead

Pulse Generator

Flip-flop

'Clock on demand'