Other Level-Restoring Schemes

Energy Economized Pass-Transistor Logic

DCVS with Pass Gates (DCVS-PG)
Delay dependence on PMOS width and load, with NMOS constant
DCVSPG Latch

Transmission Gate Based Logic
Transmission Gate XOR

Transmission Gate Adder

 UC Berkeley EE241
 B. Nikolić
Transmission Gate Logic

Conditional Sum Adder

2-way MUXes

Rothermel, JSSC 89

TG Adder

- Conditional sum adder [Sklansky’60]
- Serial connection of transmission gates
- Chain length = $1 + \log_2 n$

Signal propagation

Parasitic capacitances

Input of the adder

Output

32 bit carry or sum signal

UC Berkeley EE241

B. Nikolić
TG Resistance

![TG Resistance Graph]

Delay in Transmission Gate Networks

![Networks Diagrams (a), (b), (c)]
Delay Optimization

- Delay of RC chain

\[t_p = 0.69 \sum_{k=0}^{n} CR_{eq,k} = 0.69CR_{eq} \frac{n(n+1)}{2} \]

- Delay of Buffered Chain

\[t_p = 0.69 \left[\frac{CR_{eq}}{m} \cdot \frac{m(m+1)}{2} \right] + \left(\frac{n-1}{m} \right) t_{buf} \]

\[m_{opt} = 1.7 \frac{t_{pbuf}}{CR_{eq}} \]

Double Pass-Transistor Logic (DPL)

AND/NAND

XOR/XNOR
Double Pass-Transistor Logic (DPL)

Same number of n- and p-channel devices

XOR

Sum

Designing DPL Gates

A B C D

A B C D

A B C D
Designing DPL Gates (2)

Applications of DPL

Full adder: 1.5ns 32-bit ALU in 0.25μm CMOS

Suzuki, ISSCC’93
JSSC 11/93
XOR Gate Comparison

<table>
<thead>
<tr>
<th>CPL</th>
<th>CMOS</th>
<th>DPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swing</td>
<td>0 ↔ (VCC - VIN)</td>
<td>0 ↔ VCC</td>
</tr>
</tbody>
</table>

4-bit Adder

[Diagram of 4-bit Adder]

UC Berkeley EE241

B. Nikolić
32-bit ALU

DPL Delay vs. Supply

UC Berkeley EE241 B. Nikolić
Applications of DPL

54x54bit DPL Multiplier in 4.4ns

Booth’s Encoder

Wallace’s tree

108-b CLA Adder

4:2 Compressor

Ohkubo, CICC’94, JSSC 5/95

4:2 Compressor in DPL