SOME SCHEMES FOR PARALLEL MULTIPLIERS *

L. DADDA (**)

The possibility of combinational swilching netwovks
obiaining the product of two binary numbers is investigated.
Some schemes are proposed, all based on the use of pavallel
counters, i.e. combinational switching networks which pro-
duce al the oulpuls in codified binavy form the number of
cones » present al the inputs.

The proposed schemes obtain the produci in two sleps:
the first obtains two numbers whose sum equals the product,
withou! cavry propagation; the second step obiains ihe
troduct in a carry propagating adder.

The practical implementation of parallel couwnlers is
also considered,

1. — INTRODUCTION.

The realization of a parallel multiplier for digital
computers has been considered in a recent paper by
C. S. Wallace ('} who proposed a tree of pseudo-adders
{i.e., adders without carry propagation) producing two
numbers, whose sum equals the product. This sum can
be obtained by applying the two numbers to a carry-
propagating adder.

The purpose of this note is to present some schemes
for parallel multipliers, based on a different principle
and having some advantages over the one by Wallace,
Also some of the proposed schemes will obtain two num-
bers whose sum equals the product.

2, — THE MULTIPLIER SCHEME, BASED ON PARALLEL
COUNTERS,

The new schemes are based on the use of logical blocks
that we will call ¢« parallel (%, m) counters»: these are
combinational networks with m outputs and n (< 2™
inputs. The m outputs, considered as a binary number,
codify the number of «oness present at the inputs.
In a subsequent paragraph some implementations of
such parallel counters will be illustrated.

Consider now the process of multiplication of two
binary numbers, each composed of # bit, as been based
on obtaining the sum of ¥ summands.

These summands are obtained, in the simplest schemes,
by shifting left the multiplicand by 1, 2, 3, (n—1)
places, and multiplying it by the corresponding bits of
the multiplier. In this case, v = n.

As it is well known, the number of summands can be
made less than # by using some simple multiples of the
miultiplicand, on the basis of two or more multiplier
digits ().

(*) This paper has been presented at the « Colloque sur I'Al-
gébre de Boole s, Grenoble, I1-17 january 1963.

(**} L. DADDA, Istituto di Elettrotecnica ed Elettronica del
Politecnico di Milano,

(1) € S. WALLACE: 4 suggestion for a jast multiplier, - « IEEE
Trans. on Electronic Computers », vol. EC-13, pp. 14-=17, fe-
bruary 1964,

The reduction of the number of summands will not be
considered here. The case (v = #) will be therefore as-
samed, as the scheme proposed will work also for a
reduced number of summands.

Consider now the case of two positive factors. To obtain
the product, first represent the summands by the usual
matrix as indicated in upper portion fig. 1; (in the figure,
#n = 12). In the same figure, the significant bits are
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Fig. 1. — Multiplication ({12 x 1z bit} through addition, in a
single stage, using a parallel counter for esch column. Carries
are propagated through the counters. .

represented by dots: moreover, bits at the left and at
the right of the significant ones are supposed to be zeros.

The process of multiplication is as follows. The single
bit in column ¢ = 1, Tepresents the least significant bit
of the product, so it does not require any transformation.
The two bits in column i == 2 are applied to a (2,2}
counter: the least significant of the two outputs repre-
sents the second least significant bit of the product,
and is recorded in fig. 1 on the last line, { = 2; the most
significant output represents a carry, and is therefore
recorded in column f = 3.

In eolurnn 3 we have 4 bit: three of them belong to the
original matrix, the fourth is the carry just mentioned.
This four bits:wilt be applied to a (4.3} counter, whose
three outputs' will be recorded: in column 3 (the least
significant, representing the third least significant bit
of the product) in column 4 and in column 5 {the most
significant}, respectively.

The following columns are treated in a similar way,
using suitable counters.

The inputs of each counter are in part the bits of the
corresponding column of the summands matrix, in part
carry bits produced by the counters of the preceeding
columns. In fig. 1, carries produced by a given counter
are connected by a diagonal segment.

The set of the least significant bits produced by all
counters represents the result.

The above scheme is the most elementary one that
can be devised. However, it suffers of a serious disad-
vantage, namely that of carry propagation delay through
the counters,
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In fact, counters with a large number of inputs are
in general implemented by complicated circuits, having
therefore a substantial inherent delay.

If one wishes to minimize the effects of such delay,
a different scheme should be adopted. This scheme is
based on the foliowing remark. Consider the problem
of obtaining the product as divided in two steps. In
the first step, obtain from the original set of addends
a set of two numbers, whose sum equals the product.
The second step obtains the product in a Carry-propag-
ating adder.

Carry propagation cannot be avoided: it is simply
confined to this second step, where it can be accomplished
by special, fast circuits,

Let us now describe the above pracess with reference
to fig. 2, that represents a ¥2 X 12 product.

The first step of the process consists of cascaded
stages (in the example, 3 stages): the first stage trans-
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Fig. 2. — A multiplier scheme, cbtaining two numbers, whose

sum equals the product of 12 X 12 bit, through three stages,

using a parallel counter for each stage and for each columyn,
Carries are not propagated.

forms the matrix 4 into the matrix B; the second stage
matrix B into C, and so on, until a matrix, composed
of two rows only, is obtained: these two rows represent
the numbers that, summed in a carry propagating adder,
produce the result.

In the first stage, we begin by transcribing the single
significant bit in column 1 = 1 (in the right upper corner)
from matrix 4 into matrix B. The same is done for
column i = 2, composed of two significant bits only.

The three bits of column i = 3, are applied to a (3,2)
counter: the least significant, of the two output bits,
is recorded in B, ¢ = 3; the most significant bit is recor-
ded in B, { = 4, in the second row. Which row is chosen
for this second bit is inessential, provided it is recorded
in column 1 = 4; the rule followed in Fig. 2 is convenient
because it produces a compact matrix B,

The ¢ = 4 column has 4 bit, and correspondingly,
the parallel counter must have m = 3 outputs: the
least significant bit will be recorded in B, (i, 4) = (3.1);
the next bit in B, (i, &) = (4,2); the third, most signi-
ficant bit in B, (¢, A} = (5,3).

Note that in fig. 2 matrix B, the diagonal segment,
joining together the above three bits, signifies that these
bits are the outputs of the parallel counter fed by the
column just above the least significant bit (8 = 1), The
rule is followed in all similar cases.

The process described above for column ¢ = 3 and

i+ = 4 is repeated for the subsequent coiumns, using
each time an appropriate parallel counter.

The matrix B, thus obtained from A, has four rows:
it is then transformed into matrix ‘C by the same process.

Matrix C has 3 rows, so it is transformed into matrix
D, a two-row matrix: the two rows represent the result
of the process,

The above process can be justified as follows. With
reference to the original matrix A, it can be said that
the product is equivalent to the sum of all the bits
bi,; in the same matrix, each multiplied by a weight,
2%-1;

# 2R—T
P= X I b,2"
k4

The contribution to P of each column i, is:

L] "
P.’ = Ek bi',,z"—l ES-1a Z,,, b"k

1 I

This same contribution is represented in matrix B by
k
the output of the counter, I, by s, whose least significant

I
bit is in column 4, and therefore has weight 29,

The matrix B, therefore, is equivalent to matrix A4
as far as the evaluation of the product is concerned.

Mattices C and D are also equivalent to A, having
been obtained from B and C respectively by the same
transformation.

The procedure described can be applied to factors
with arbitrary value of #, on the assumption that paraliel
counters having a suitable number of inputs are available.

The number of stages required is easily determined,
and appears as in table I

TABLE 1. — Number ‘ci stages required for a parailel multiplier
(vs. swmber of bits the multiplier) wusing parallel countess without
Hmilation on the number of inpuis.

Number of bitg in the multiplier Number of ateges

3 I
3<n=7 2
7 ne 13 3
13 << g 32 4
JA< m e B4 5

3- — THE USE OF COUNTERS WITH A LIMITED NUMBER
OF INPUTS: (2,2) AND (3,2) COUNTERS, -

Counters with a large number of inputs are difficult
to realize. It is therefore important to see how the method
could be applied using counters with a limited number
of inputs, n,.

It is apparent that the method can be modified as
follows. If the number of significant bits in a column
of the matrix to be transiormed (initially matrix A) is
greater than the number #, of inputs to the available
counters, divide the bits in groups, each having at most
%, bits. Each group can then be applied to the counter’s
inputs, each counter providing thus for each group the
number of ones coded in binary.

Such counts are placed in the B matrix, all with the
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least significant bit in column i, and using as many
TOWS as necessary.

The same holds for the subsequent transformations,
until a 2-row matrix is obtained.

The most important remark on the above procedure
is that the number of stages necessary will in general
be greater than that required with unrestricted counter
inputs. '

One might, in this connection, look for the minimum
number of inputs, that can still be used for the imple-
mentation of the method.

This minimum number is of course #we; (2,2) counters
can be used as shown in the examples in Fig. 3, and
Fig. 4, representing the cases # = 3 and » = 4 respect-
ively.

Fig. 3. — A multiplier structure, obtaining two numbers, whose
sum equals the product of 3 x 3 bit, through the use of 2 input/z
output parallel counters.

The example n = 3 works as follows. Columns ¢ = 1
and ¢ = 2 are reproduced in B. Column { = 3 is composed
of 3 bit: therefore z of them are applied to a (2,2) counter,
whose outputs are reproduced inf B, columns ¢ = 3 and
f = 4 respectively (in the figure, they are connected
together by a segment); the 3rd bit is simply reproduced
in B, §=3.
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Fig. 4. — Same as fig. 3, for the product of 4 X 4 bit.

Columns 4 has 2 bit, as column 2: nevertheless it is
transformed by a (2,2) counmter, to produce the bits in
columns 4 and 5 of B, because in B, column § = 4 there
is already the carry from column 3. The single bit in
columnn 5 is simply reproduced.

The case n = 4 is completely analogous. Considering
cases with larger », it can be found that the number of
necessary stages, when” using (2,2) counters, is 2%,
This means that, for pratical values of » (e.g., » = 30),
the nmumber of stages would become very large and
consequently the total delay would become too great.

As we will see in the following, the number of stages
is drastically reduced if counters with » = 3 or more
are used. On the cther hand, it must be noted that coun-
ters with u larger than 2 are not difficult to implement,
This is certainly the case for n = 3, that is a full adder
network.

Fig. 5 represents the multiplication process for the
case n = 12 (like fig. 2), using (3.,2) counters and, when
necessary, also some (z,2) counters. It can be seen that
the total number of stages required is 5 (instead of 3,
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Fig. s. — Same as fig. 2, through the use of 3 or i-inputfy
outputs parallel counters,

which represents the absolute minimum; see fig. 2).
The process is carried out in fig. 5, with the following
rules.

Columrns 1 and 2, are simply reproduced in B (and in
all following matrices).

Column 3, having 3 bit, is transformed in B into 2
bit: the least significant in column 3, the most significant
in column 4 (second row). (They are connected by a
diagonal segment, as used previously).

Column 4 has 4 bit: three of them are transformed by
a (3,2) counter, the fourth is simply reproduced in B,
{(4.3).

Columh 5 has 5 bit: three of them are transformed
by a (3.2) counter, the last two by a (2,2) counter: the
latter's outputs {in B, (5,3) and B, (6,4), respectively)
are joined by a diagonal segment crossed by a bar to
signify that they are outputs of a (2,2) counter.

Similar rules are applied to all the following columns,
through the last column (23rd} which has a single bit.

The matrix B obtained by the application of the pro-
cess, can be shown to be equivalent to 4, as far as the
evaluation of the product is concerned.

The same process can be used to obtain C from B, D
from C, E from D and F from E. F has two rows, whose
sum represents the product.

Some remarks can be made about the described process,
which was based on (3,2) counters.

a) the number s of stages can be determined as
follows.

It can be seen that the last 2-row matrix can be
derived by a 3-row matrix. This is true regardless of the
type of counters used.

A 3-row matrix can be derived from a 4-row matrix:
in fact, three of the bits of each column can be reduced
to two, by a (3,2) counter; the fourth bit is simply
reproduced. This is obtained in the (s — 1) #A stage.

JE
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A g-row matrix can be derived from a 6-row matrix,
as can be easily verified, This is the (s —2) ¢ & stage.

A 6-row matrix can be derived from a g9-row matrix:
(s — 3) t & stage.

A g-row matrix can be derived from a 13-row matrix;
(z+2+2+241+34+3+3+ 3+ 1). This is the
(s —4) ¢ b stage.

In the example of fig. 4, # = 12, so that the number
of stages is given by: s — 4= 1; s = 5, as obtained.

Proceeding with the same rules, table II, valid for
{3.2) counters, can be drawn up.

TABLE 1. — Number of slages required for o parailel smuliiplier
{vs. mumber of bits of the mulliplier) using (3,2) counters only,

Number of bits in the multiplier Number of stages

3

4
4<<n=6
6 ng
9 N 13
13<C Bz 19
1< # < 28
2B # = 42
42 # = 63

O BN e N M

b) The scheme of fig. 5 is not the only one possible
with (3,2) counters.
Fig. 6 represents a, process, sligtly different from that
in fig. 5 and leading to a considerable saving in compo-
nents. [n fact, the scheme in fig. 5 requires a total of
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Fig. 6. — Same as fig. 5, with a different scheme using less
counters,

136 counters (101 are (3,2) counters, 35 are (z,2)); the
scheme of fig. 6 requires 116 connters (104 are (3.2),
12 are (z,2)).

The rules applied in fig. 6 are the following,

In the first stage, columns 1 to 13 are treated in the
same way as in fig. 5.

Columns 14, 15, 16 and 17 (having 10, g, 8, 7 bit

respectively in matrix A, are only partially reduced,
so that in matrix B they are composed of 8 bit (taking
into account the carrics from the precceding columns),

All remaining columns are reprotluced in matrix B
without any reduction,

The reason of doing so is cssentially the following.
It is not convenient to try reduction of the number of
bits in a given column, when it is preceeded by columns
having a larger number of bits, because carries from the
latters tend to increase the number of hits.

It should be remarked that in passing from matrix
B to matrix C the last two rows of matrix B are repro-
duced in C withount any transformation.

6) A sligtly -different criterion is applied in fig. 7,
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Fig. 7. — Same as fig. 6, with a different scheme, using less
counters,
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where a further reduction in the number of counters
is achieved (113 instead of 116).

The scheme in fig. 7 is the same as in fig. 6 for columns
1 to 12,

Column 13 and the followings, are only partially re-
duced so that in matrix B they have no more than ¢
bit (while in Fig. 6, 8 is the maximum number of rows
in matrix B,

Although nothing can be said in general about the
effect of such a rule, it can however be noted that both
9-bit columns and 8-bit columns are reduced successively
to 6, 4, 3, and 2z bit in the succeeding matrices. The
reduction of such columns from matrix 4 to matrix B
requires less counters for ¢ column than for 8. Moreover,
although in the succeeding stages more counters are
required for a 9-row than for an 8-row B matrix, there
is a net saving in the total number of counters,

d} Another reduction scheme can finally be descri-
bed, as the example in fig. 8 shows. It requires the least
number of component of all schemes considered: II0
counters (96 of (3,2) type; 14 of (2,2) type).

The rules applied in Fig. 8 can be described as follows.
First, notice that in the original matrix 4 the middle
column (rzth) has 12 bit, and that proceeding from that

—
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columns to the right and to the left, columns have a
decreasing number of bits.

In passing from matrix 4 to matrix B, columns are
only partially reduced, so that no more than g rows
are obtained. For example, column 10 (10 bit) is trans-
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Flg. 8, — Same as fig. 7, with a different scheme, using less
counters,

formed in a g-bit column in B, by reproducing 8 bit
without transformation and transforming only 2 bit,
by a (2,2) counter.

Consequently, only some columns in the central portion
of matrix 4 are actually transformed.

In passing from matrix B to C, columns havmg no
more than 6 bit are obtained. In succeeding transform-
ations, colnmns with no more than 4, 3 and 2 bit respect-
ively are obtained. )

The above rules can be generalized for # X # bits
multiplications as follows,

Consider first the following series:

2; 3, 6, 9; 13; 19; 28; 42; 63; ...

(where each term is obtained from the preceeding, by
multiplying it by 3/2 and taking the integral part).
The terms of this series correspond to the number of
those matrices obtained from the final, 2-row matrix,
and applying the reverse of the transformation described
in the preceeding examples.

Given then the original 4 matrix for a » X »n bits
multiplication, obtain through the first transformation
a matrix B having a number of rows coinciding with the
nearest term of the above serie which is less than #.

All the following matrices will have a number of
rows coincident with the terms of the series (in decreasing
order of magnitude),

From the above examples it appears that the best
rule is the last one described.

Although no proof is given here of the optimality of
such rule, nevertheless all examples worked out for
different values of # are in accordance with the results
obtained for » = 132,

#) It is interesting to compare the described schemes
with the Wallace scheme. This can be considered as a.
parallel muitiplier composed of (3,2) counters.

The Wallace muitiplier is based on a tree of pseudo-
adders, as shown in the block-diagram of fig. g (Wallace

notation}, Each psendo-adder is effectively composed of -

a set of (3,2} counters, as appears in fig. 10, where the
notation wsed in the preceeding figures of this paper
is used,

Fig. 0. — Black diagram for a parallel (12 X 12) multiplier
sttucture, accotding to Wallace,

Fig. 10, concerning the case # = 12, requires a total
of 136 counters {10z are (3,2), 34 are (2,2)), that is the
same number of counters required in the fig. 5 scheme.
This coincidence is rot valid in general. It can be shown
that, for # > 12 the Wallace scheme requires less counters
than the fig. s scheme.
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Fig. 10. — The Wallace scheme for a (12 x 12) multiplier.

However, the schemes based on the rules illustrated

in the preceeding paragraph 4 (see fig. 8) requires less
counters than Wallace scheme.
For instance, for the case n = 24 one obtain:

— Wallace scheme: 575 counters
— fig. 8 scheme: 506 counters
— fig. 5 scheme: 606 counters.

f) The following remarks can be made about the
described schemes, Fn all the examples (fig. 5, 6, 7, 8)
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it can be seen that the bits in the least significant portion
of the result are produced through 2 number of stages
smaller than the total.

Examining, for instance, fig. 3, it can be verified that:

— the least significant bit (i == 1} and the two bit
in column i = 2 are produced without any stage,

— the bit in column i = 3 is produced through the
firgt stage;

— the bit i = 4 is produced through the second stage;
ete. etc.

This is very important if the speed of the circuit is
considered, as each stage introduces a certain delay.

In fact, the above remark means that the least signi-
ficant portion of the two final numbers is produced with
a delay that increases progressively from the least si-
gnificant bit (no delay} on.

Because the two final numbers must be added together,
to cbtain the product, in a carry-propagating adder,
this means in turn that the carry propagation delay in
the least significant half of the adder is overlapped by
the progressively increasing delay through the multiplier
structure. Whether the carry delay in the adder is
greater than the multiplier delay or not, depends of
course from the type of circuit used and also from the
operands.

It can be seen also in the examples given (see e.g.
fig. 5) that the second final summand (second row in
matrix F) has some zeros, regardless of the bits of the
original operands, Such situation can be accounted for
in the construction of the adder, using half adders in
the stages corresponding to the zeros of the second
summand, thus simplying the final adder.

4 -~ THE USE OF HIGHER ORDER COUNTERS: (7,3) AND
(15.4) COUNTERS,

The (3,2) counter, i.e. the full adder, is the commonest
form of implementation of the paralle! counters concept,
and the use of such counters in parallel multipliers has
been discussed in the preceeding point,

Higher order counters, i.e. counters having a larger
number of inputs and outputs, although not currently
used, are nevertheless entirely feasible with today's
technology, as will be shown in the next paragraph, This
is ‘certainly the case for (7,3} counters. Moreover, high
order counters compare very favorably with (3,2) coun-
ters as far as the number of components is concerned.
It is therefore interesting to investigate briefly on the
problem of multiplier's implementation using such coun-
ters.

It can be shown that most of the considerations il-
lustrated in the precceding paragraph are valid for higher
order counters. in particular, the scheme illustrated in
paragraph d) proves to be the best, as far as the total
number of counters is concerned.

The most important point to be illustrated is the num-
ber of stages required, as a function of the counters order.

Suppose that, beside (3,2) counters, (7,3) counters
are available. Starting now from the final z-row matrix,
observe that it can be obtained from a set of 2-output
counters, i.e. (2,2) or (3,2) counters. This means that
the next matrix must have only 3 rows.

A 3-row matrix can be obtained from a set of 3-output
counters, i.e. from counters having 7 inputs, at most.

‘The next matrix must therefore have 7 rows at most.

A 7 row matrix can be decomposed in two 3-row
matrix and & 1-row matrix. This means in turn that it
can be derived, through (7,3) counters, from a matrix
having 7 + 7 + 1 = 15 rows.

Proceeeding with such rules, the following series can
be obtained:

2; 3, 7: I5: 35: 79 ...

that can be used as the scries of the preceeding paragraph
(valid for (3,2) counters).

For example, if a multiplier is to be designed for
numbers having 48 bit, it can be seen that 5 stages are
required. The first stage will obtain a 35-row matrix,
the second a rj-row matrix, etc.

If now we suppose that (15,4) counters are available,
beside {3,2) and (7,3) counters, the following series can
be obtained, using rules similar to those applied for
the preceeding case:

2; 3; 7, 2I; O1; 226; ...

It can be seen therefore, that for a 48 bits multiplice,
4 stages will be required.

As was announced previously, high order counters

can afford an important saving in components. For
example, if counters based on threshold devices are used

. {sec next paragraph), the total numbers of transistors,

required by the multiplier structure for 24 bit {excluding
the carry propagating adder and the network generating
matrix A) is as follows:

(3.2) counters: Wallace scheme: 1150 transistors
scheme d):
(7,3) counters: scheme 4):

1012 transistors
490 transistors

5. — REMARKS ON PARALLEL COUNTERS,

The schemes discussed in the prececding paragraphs
are all based on the use of parallel connters. It is therefore
worthwhile to discuss briefly on their practical imple-
mentation.

Before describing some counters, let us discuss on
some characteristics that prove useful in the peculiar
application considered.

Among the different type of full adders, the most
suitable for the application in parallel multipliers, from
the point of view of economy and speed, are those which
require input wvariables of one form only (natural or
complemented}, so that output varlables of the same
form only must be generated. If such condition is sati-
sfied, outputs of one stage can be used directly as inputs
to the next stages, without the need of inverters, leading
in general to a considerable saving in components and
to a reduction of stage delay.

It must be noted that the above restriction can be
partially released by allowing the use of counters pro-
ducing outputs of only one form but different from the
input’s form (s inverting counterss). We will examine
later some simple circuits, of this type.

The use of inverting counters does not modify sub-
stantially the described schemes. Consider the use of
such counters in the scheme of fig. 5 and suppose that
all the bits of the final matrix F are to be obtained in
true form, Assume then the preceeding matrix E to be
in complemented form, the preceeding matrix D in
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tmme form, etc.: ie., matrices are alternatively in true
or complemented form. This situation can be obtained
if, when transforming from one matrix to the next,
one use inverting counters or, when bits were simply
to be reproduced, inverters.

All inverters can nevertheless be avoided, if single
bits in the original matrix 4 are produced in a suitable
form. Consider for example, columns 1 and 2: according
to the previous rule they should be in complemented form
in matrix 4: but they can be simply transfered from
A to F if they are produced in 4 in true form. On the
contrary, column 3 must be produced in A4 in comple-
mented form, so that the single bit produced in matrix
B, column 3) in true form, can be directly transfered to
F, and so on.

It can thus be said that inverting counters can be
used, provided that bits in the original matrix 4 are
produced in a suitable form.

An interesting feature of all schemes of parallel mul-
tipliers is that each counter output is loaded by u single
input of a counter of the next stage. This featurc can be
conveniently accounted for in the clectrical design.

Some considerations will now be made on the imple-
mentation of parallel counters, with reference to some
of the available logic circuitry and taking into account
the above remarks.

a) ¢ And-or-not » logic. A full-adder, satisfying the
above requirement, can be based on the following equa-
tions:

R=AB+AC+BC

S=R(A+B+C)+A4ABC
where:

A, B, C, are the input variables
R, § are the outputs.

A full adder of this type has been reported by Wal-
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been investigated, Nevertheless it can be said that the
number of components will increase rapidly along with ».
Similar conclusions can be accepted for «nors (or

« nand ») logic, although cheaper circuits will be obtained.
b) Threshold gates. Counters using threshold gates
can be of the non-inverting type or of the inverting type
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. [ A [ A —
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Fig. 11. — The logical definition of threshold gates,

according to the type of threshold gate used {see fig. 11).
An interesting scheme for inverting counters, is reported
in Fig. 12 (for a (3,2) counter), and Fig. 13 (for (7,3)
counter.

A simple realization of an inverting (3.2) counter
using resistor-transistor gates, is represented in fig. 12,b.

It is probably the simplest circuit that can be devised
for ‘a full-adder, as it uses only 2 transistors (one for
each output) and some resistors. Using available com-
ponents, a delay of less than roo ns can be obtained.

An investigation has been undertaken in our laboratory
in order to explore the possibilities of threshold counters
for parallel multipliers.
¢} Current switching, Current switching circuits offer a
mean for implementing parallel counters. Current swit-
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Fig. 12, — a} = (3,2) pafallel counter, using inverting threshold gates. ) = a realization
of an inverting (3,2} counter, using resistor-transistor threshold circuits.

lace (1), It is an inverting counter, requiring 18 diodes
and 3 transistors, and having a total delay of 60 ns.

It does not seem that the realization of counters of
higher arder, and satisfying the above requirement, has

ching can be realized using transistors or criotrons.

Transistor current switching circuits are the fastest logical

circuits realizable with a given transistor type (1).
Using available transistors, it should be possible to
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realize (3,2) counters having a delay of 1020 ns. They
are, however less economical than all other circuits.
It should be noted that special circuits {i.e. not suitable
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Fig. 3. — a (7,3) patallel counter, using inverting thresholg
gates,

for general purpose logic) could probably be devised in
order to obtain fast and cheap counters. A similar situ-
ation is afforded by parallel adders, that can be realized
using expecially designed circuite (see: (1)), '

6. — CONCLUSIONS.

Having established the possibility of a parallel digital
multiplier, some considerations can now be made about
the important aspects of speed and cost than can be
encountered in a practical design.

It is worthwhile first to recall that if one assumes *
that a third of all arithmetic operations in scientific

(*) D. B, Jamvis, 1. ¥, MORGAN, J. A. WEARER: Transistor
current swilching and routing lechnigues. - « IRE Ttans. on Electro-
nic Computers », vol. EC-g, n. 3 Pag. 3oz, september 1960,

computers are multiplications and that these at present
take about four times as long as additions, the use of
a fast multiplier allowing a multiplication in a memory
cycle time, would approximately double the speed of
computation.

There is therefore a chance that a parallel multiplier
could become a convenient mean to improve the value
of a computer, owing to the fact that it cost can be
shown to be only a few percent of the total computer cost.

The following is an estimate about the type of multi-
plier circuits, based on actial memory cycle times,

Let us first note that the total multiplication time
is composed of two parts: the first is the time elapsed
from the application of the signals representing the two
factors to the inputs of the multiplier, to the availability
of the inputs to the carry-propagating adder; the second
part is the delay proper of the adder, mainly consisting
in the carry propagation delay.

In the design of a practical maultiplier, one can assume
as a goal to obtain a total delay equal or less that to the
cycle time of the high-speed memory, so that the compu-
ter can work at its maximum speed, limited only by the
memory speed. The choice of-the type of circuits depends
therefore from the memorw cycle time.

If a core memory having a cycle of 4 us or more is
considered, threshold gates, allow a Vvery convenient
solution. The fastest core memorics have cycle time in
the order of 1 us. In this cases, probably threshold gates
could again be wsed, provided (3,2) counters having
delays of the order of 50 ns are designed and carry
propagating adders with less than 100 n3 delay are
employed.

In cases where fastest memories are considered (for
instance, magnetic film memories, or tunnel diodes me-
mories} having cycle times of zoo ns or less, fastest
counters should be designed, for instance of the current
switching type.

Although the problem is beyond the scope of this
paper, it must also be noted that the realization of
parallel multipliers should also influence computer or-
ganization. It is well known, indeed, that some important
features of fast computers depend on the fact that
during operations, that last longer than one memory
cycle (typically, during mulliplication or division), me-
mory can be made available for other operations {eg.
input-output).

It appears therefore necessary to review the computer
structure, as far as it depends from the duration of
maltiplications.

The paper was first received 2oth Avril 1965,




