EE241 - Spring 2002
Advanced Digital Integrated Circuits

Lecture 5
Circuit Optimization for Speed

Reading

Memory Architecture: Decoders

- Input-Output (M bits)
- Storage Cell
- N Words => N select signals
- Too many select signals
- Decoder reduces # of select signals
 - \(K = \log_2 N \)

Array-Structured Memory Architecture

- Problem: ASPECT RATIO or HEIGHT >> WIDTH
- Amplify swing to rail-to-rail amplitude
- Selects appropriate word
Memory Decoders

Collection of 2^m complex logic gates
Organized in regular and dense fashion

(N)AND Decoder

$\overline{WL_0} = A_0A_1A_2A_3A_4A_5A_6A_7A_8A_9$

$\overline{WL_{511}} = A_0A_1A_2A_3A_4A_5A_6A_7A_8A_9$

NOR Decoder

$\overline{WL_0} = \overline{A_0} + \overline{A_1} + \overline{A_2} + \overline{A_3} + \overline{A_4} + \overline{A_5} + \overline{A_6} + \overline{A_7} + \overline{A_8} + \overline{A_9}$

$\overline{WL_{511}} = \overline{A_0} + \overline{A_1} + \overline{A_2} + \overline{A_3} + \overline{A_4} + \overline{A_5} + \overline{A_6} + \overline{A_7} + \overline{A_8} + \overline{A_9}$

- Assume a 256 row decoder
- 8 address lines available in both true and complement values
- Each true/complementary input drives 128 complex AND gates.
- If it is a 256 x 256 memory, each AND gate drives a 256 cells
- Large fanout: $128 \times 256 \times \frac{C_{cell}}{C_{adr}}$
- Number of options how to implement
 » NAND8, or NAND4-NAND2, or NAND2-NAND2-NAND2 + inverters.
Memory decoders

- Number of stages = \(f(\text{fanout}) \)
- If \(\frac{C_{\text{cell}}}{C_{\text{adr}}} = 1 \), fanout = \(2^{15} \)
- Optimal number of stages is \(\log_4 G 2^{15} \), which is not less than 7. If \(G \) is about 2 number of stages is 8.
- Is it better to use one large NAND8 and 7 inverters or NAND4, NAND2 and 6 inverters, or NAND2-NAND2-NAND2 and 5 inverters?
- Will it fit in the row pitch?
Divided Wordline

Amrutur, JSSC 10/01

UC Berkeley EE241 B. Nikolic

Two-Level Decoder

[Amrutur99]

UC Berkeley EE241 B. Nikolic
ALU Design

64-bit ALU

Matthew, JSSC 11/01

ALU Design

From register files / Cache

To register files / Cache