Variability Sources

- **Physical**
 - Changes in characteristics of devices and wires.
 - Caused by IC manufacturing process & wear-out (electro-migration).
 - Time scale: 10^9 sec (years).

- **Environmental**
 - Changes in VDD, Temperature, local coupling.
 - Caused by the specifics of the design implementation.
 - Time scale: 10^{-6} to 10^{-9} sec (clock tick).
Process Variations

- Control of minimum features does not track feature scaling
 - Relative device/interconnect variations increase
- Sources:
 - Random dopant fluctuations
 - Feature size, oxide thickness variations
- Effects:
 - Speed
 - Power, primary leakage
 - Yield
Increasing Process Variations

- Increase in variation of process parameters with scaling
- Worst-case design getting more expensive
- “Better than worst-case” design must be error tolerant

Percentage of total variation accounted for by within-die variation (device and interconnect)

Variability in sub 100nm Technologies

- Higher fractional (%) variability with finer design rules and larger wafers (Table source ITRS)

<table>
<thead>
<tr>
<th>L (nm)</th>
<th>250</th>
<th>180</th>
<th>130</th>
<th>90</th>
<th>65</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vt (mV)</td>
<td>450</td>
<td>400</td>
<td>330</td>
<td>300</td>
<td>280</td>
<td>200</td>
</tr>
<tr>
<td>σ-Vt (mV)</td>
<td>21</td>
<td>23</td>
<td>27</td>
<td>28</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>σ-Vt/Vt</td>
<td>4.7%</td>
<td>5.8%</td>
<td>8.2%</td>
<td>9.3%</td>
<td>10.7%</td>
<td>16%</td>
</tr>
</tbody>
</table>

- Lower voltages – less head room
- High speed and RF functions in CMOS
- Design time and risk for analog sections starting to exceed digital sections
- Pressure to ramp products to volume and early profitability
- Mask costs $1M at 90nm, $2M at 65nm
Vt Distribution

- High Freq
- High Isb

- Low Freq
- Low Isb

Sources of Variations

- Random Dopant Fluctuations

- Sub-wavelength Lithography
Is Variability for Real?
Variability \neq Statistics
Most of the variability is Systematic
The key question is how much is known at design time
Most of variability is NOT getting worse each generation

Achieving Sub-wavelength Resolution

Design	Mask	Wafer
250nm | OPC | PSM
180nm | 0° | 190°
90nm and Below | 0° | OPC
Variation Components (Wafer)

- Global variation comes from Fab, Lot, Wafer processes
- Linear variation is due to materials and gas flow
- Radial variation is due to thermal and spin processes
- Wafer level variation is the sum of global, linear, and radial variation
- Affects mainly single-ended circuit performance measures like switching speed, gain, dynamic power etc.

Variation Components (Reticle, Local)

- Reticle variation is due to optical processes
- Local variation comes from totally random microscopic processes. It affects mainly differential circuit performance measures like differential amplifier offset voltage, current mirrors, DACs, etc. Becoming important for digital design (30% of global variation at 130nm).
Parametric Variation Components - Summary

- **Global** variation between chips: Includes Fab, Lot, Wafer, and Reticle level variations. Captured by case files for digital design.
- **Local** variation: Truly random variation between common centroid devices with identical layout. The magnitude is a function of geometry. Critical for analog matching.
- **Position** dependent variation: Due to across chip gradients. Important for large analog blocks, global clocks, and long critical paths.
- **Proximity** and orientation dependent variation: Systematic and deterministic rather than random. Can be modeled, extracted, simulated, reduced by process changes, design techniques, and mask compensation.
- Position and proximity dependent variation needs to be folded into global and local variation for pre-layout simulation.
- **Age** dependent degradation.
- Static and time dependent thermal, V_{dd}, and Xtalk variation.

Environemntal Variations: Power Supply

VDD Noise ≈ $\mu I_t R_g + \mu L + R_g^2 C_d (1 - e^{-V_t})$ ~ Same
Environmental variations: Thermal

Temperature varies within the chip

- Power 4 Server Chip: 2 CPU on a chip
 - The CPUs can be much hotter than the caches

Causes Larger Frequency Distribution

Courtesy Intel
Frequency & SD Leakage

![Graph showing normalized frequency and leakage]

- Low Freq: Low Isb
- High Freq: Medium Isb
- High Freq: High Isb

Variation-tolerant Design

- Balance power & frequency with variation tolerance
- Transistor size: small, large
- Logic depth: large, small
- Low-Vt usage: low, high

![Charts showing balance between power, frequency, and critical paths]

- # uArch critical paths: less, more
Approaches

- **Worst-case design**
 - Leaves too many crumbs on the table. Huge concurrency overhead for performance.
- **Regular design strategies to reduce variation**
- **Careful choice of logic styles**
- **Self-adapting design.**
 - Turns on-line knobs (Vdd, Vt) to guarantee operation of the design. Uses one-time correction for systematic errors
- **Alternative Timing Approaches**
 - Self-timed or clockless design
 - Defers the decisions to the system level. Comes with large overhead
 - Pseudo-synchronous design
 (e.g. Razor)
 - Allows for occasional timing errors. Limited operation range.

Problem:
Predictability \(\approx (\text{Chip Variability})^{-1} \)

- Std library abstractions break: don’t “hide” the details anymore, as we scale down
- Correlated random variations hit ckt level
- Demise of context-free layout design rules
- Local printability problems
- Global effects
- Cu thickness distribution

30 March 2005 Slide 20
Yesterday’s Freelance Layout

No layout restrictions

Transistor Orientation Restrictions

Transistor orientation restricted to improve manufacturing control
Transistor Width Quantization
“Fabrics” Idea: Atomic Regularity
(Make the Variability Small... Everywhere)

- Starting from basic manufacturing shapes \(\rightarrow\) circuits \(\rightarrow\) logic \(\rightarrow\) routing
 everything is extremely regular
- Means radical re-architecting of flows
- How much predictability? At what cost?
- Initial motivation was “what’s after ASICs”, now more generally aimed at “predictability”

Today’s designs

Tomorrow’s designs

Regular/Structured Integrated System

- Regular Circuits
- Regular Geometry Fabric

Regular Fabrics – A Plethora of Choices

Trade-off between area, performance, power and time-to-market (factors 5 to 10)

VPGA CMU

River PLA Berkeley

Structured ASIC (e.g. LSI RapidChip)
Fabric Architectures: Via Patterned Gate Array

- Configurable with 4 masks for top vias
 - Base architecture can be like an FPGA – but replace expensive switches with mask-config vias

- Many possible interconnect options: std cell routing, or fully regular top-level patterned routing

<table>
<thead>
<tr>
<th>Network switch (80k Gates)</th>
<th>Area (um²)</th>
<th>Slack (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard ASIC flow</td>
<td>1752048</td>
<td>-2.521</td>
</tr>
<tr>
<td>Regular Logic VGA flow</td>
<td>1960000</td>
<td>-2.982</td>
</tr>
</tbody>
</table>

- Array offers fully predictable geom. patterning

Fabric Analysis: Enhanced Manufacturability for Regular Ckt Fabrics

- Reduced CMP effects
 - Copper dishing < 40Å
 - Post-CMP Copper thickness variation is less than 2.3%
 - Highly promising as a manufacturable 'logic' replacement structure
Fabric-level Custom Circuit Design: Limited-Switch Dynamic Logic (LDSL)

- Merges latch with every output stage
- Speed of domino – with less power

 ![Diagram of domino and LSDL comparison]

 Domino
 LSDL [Montoye 03]

- Experiment: 16-bit Kogge-Stone adders, full domino vs LDSL
 - 58 extracted 0.18um fab run models
 - Monte-Carlo for chip-to-chip & mismatch

- LDSL: good for size & speed
 - ~20% less area; ~2X faster

- LDSL: good for regularity, var tolerance
 - Cells more regular in content and size.
 - Less variation in pattern density.
 - More tolerant of manufacturing variation

Fabric-Level Flow Design: “Regularizing” Cell-Based Flows

Complementary approach:

- Regularize a library-based flow
 - Every cell is identical—except for vias
 - Regularity issues handled by cell layout generators, exclusively
 - Extends lifetime of existing flows

- Looking at impacts on performance
 - Ex: granularity of available cell sizes (i.e. library size) is reduced

[Sechen, Washington]
30 March 2005 Slide 33
RapidChip® Platform ASIC

- **Configurable Platform**
 - Families of pre-manufactured slices
 - Sea of transistors for high density, high performance user-configurable logic
 - Up to 5 layers of metal personalization
 - Flexible approach to IP:
 - Diffused only when performance dictates, eg high speed SerDes
 - On-demand for most other IPs, eg processors
 - Rich portfolio of soft IPs available

Today’s Reconfigurable FPGA Platform

- High-speed 3.125 Gbps Serial Transceivers
- >500 DSP datapaths
- 10 Million gates
- PowerPC™ Processor 400+ MHz
- Programmable IO
- 10Mbit Dual-Port™ RAM
Delay and Power Variability in CMOS

Goal: Investigate the effects of variations in V_{th}, L_{poly}, W, t_{ox} and V_{dd} on the performance of a family of representative circuits.

- Quantify the statistical variability of circuit delay and power (active).
- Identify single parameter contributions to overall variability levels.

Circuits under study:
- NAND chain (six stages)
- Adders (16-bits, various architectures)
- Logic styles: Static, Dynamic Domino, Passgate
- All transistor sizes optimized for minimum delay under an area constraint

Experimental Setup:
- 90nm, pd-SOI technology
- Industrial research site
- All parameter distributions set by predictive BSIMSOI models, ITRS (2003)

Monte Carlo Simulation I

Goal I: Vary all parameters simultaneously; study the statistical variability of power and delay.

Variable parameters:
- V_{th}, L_{poly}, W, t_{ox}, V_{dd}: 1V (mean value)
- Temperature held at 85°C
- Interdependencies between parameters reconciled within the simulation

- $N = 200$ for adders, $N = 1000$ for NANDs

The spatial correlation coefficient defines parameter matching between adjacent transistors
- Each parameter is assigned identically to all transistors within each circuit instance
- ρ is set to 1, indicates perfect correlation (worst-case)
The operating value of V_{th} is composed of its long channel V_{th0} value modified by ΔV_{th} factors (BSIMSOI Model):

$$V_{th,\text{OPERATING}} \approx V_{th0}(N_{\text{channel}}, \Phi_M, \Phi_S, I_{ox}) + \Delta V_{th,\text{HALO}}(V_{th}) - \Delta V_{th,\text{DIBL}}(V_{ds}, L) + \Delta V_{th,\text{BIAS}}(N_{halo}, L) + \Delta V_{th,\text{NarrowWidth}}(W)$$

Interdependencies between parameters are reconciled within each simulation by separating $V_{th,\text{OPERATING}}$ into independent and dependent components.

Monte Carlo Simulation II

Goal II: Isolate individual parameter contributions to overall power/delay variability

Parameter distributions same as in previous setup

Again, perfect spatial correlation of parameters is assumed ($\rho = 1$)
NAND Chains (6-stages)

- Static capacitive load, $C_L = 10\text{fF}$
- Active, FO3 load (value varies with parameter fluctuations)

Adders

- Ripple carry with Manchester carry chain (passgate-based)
- Carry select, logarithmic configuration

Static CMOS

Static Passgate (LEAP)

Pulsed Static

Dynamic Domino

Static capacitive load, $C_L = 10\text{fF}$

Active, FO3 load (value varies with parameter fluctuations)

Ripple carry with Manchester carry chain (passgate-based)

Carry select, logarithmic configuration

Static

Dynamic

Bit level C_{out} and Sum selection
Block level C_{out} selection
Cout generation

Static, Dynamic Domino, Passgate
Adders: CLA Trees

- **Kogge Stone, Radix 2**
- **Kogge Stone, Radix 4**
- **Brent-Kung**
 - Large intermediate load capacitance along critical path (Sum07 node)
- **Han-Carlson**

Delay, Power Variability: NAND chains

- The static CMOS implementation is the most robust to process parameter variations
- The passgate style (LEAP) displays the highest levels of delay and power variability (30% higher than static)
Delay Variability: Adders

- Static carry select is the most robust
- The three most variable are passgate-based, between 31% - 67% more spread than static carry select

Power Variability: Adders

- Most robust: static ripple with Manchester carry chain
- The least robust: designs with large/irregular intermediate load capacitance along critical paths (radix 4 Kogge Stone, Brent Kung)
Single Parameter Breakdown: NAND Chains

- Results vary depending on final loading stage (static vs. FO3)
- \(V_{th} \) is most significant contributor in all cases
- For active, FO3 loads:
 - Passgate design is most sensitive to \(V_{th} \) variations
 - Increased significance of \(L \) variations

Single Parameter Breakdown: Adders (Delay)

- \(V_{th} \) is most significant contributor (33% average)
- Passgate designs are the most sensitive to \(V_{th} \) variations
- \(L \) is nearly as significant (28% average)
Conclusions

- Static CMOS implementations are generally the most robust to parameter variations, for both delay and power.
- Passgate designs display the least amount of robustness:
 - Suffer spreads in delay and power variability between 30% – 70% higher than static designs.
 - Tend to display highest sensitivity to V_{th} variations.
 - These are worst-case results, due to the assumption of perfect parameter correlation.
- V_{th} variations account for 35% - 40% of delay variability.
- Power variability trends suggest a dependence upon large or irregular intermediate load capacitances.
- V_{dd}, L, and V_{th} are consistently the highest contributors to both delay (85%) and power (80%) variation.
A Self-adapting Approach

Motivation: Most timing variations are systematic, and can be adjusted for at start-up time using one-time calibration!

- Relevant parameters: T_{clock}, V_{dd}, V_{th}
- V_{th} control — the most effective and efficient at low voltages
- Can be easily extended to include leakage-reduction and power-down in standby

- Achieves the maximum power saving under technology limit
- Inherently improves the robustness of design timing
- Minimum design overhead required over the traditional design methodology

V_{th} Tuning via Body Bias

- Less design cost than V_{dd} tuning
- V_{th} tunable range: >150mV for a 90nm Technology
Power and Timing Tradeoffs

V_{th} tuning can effectively gain performance back

Adaptive Body Bias--Experiment

Die frequency: Min(F_{1}..F_{21})
Die power: Sum(P_{1}..P_{21})
Adaptive Body Bias--Results

- Adaptation based on variations
- Yield increase with ABB
- 97% highest bin with ABB for within-die variability

Adaptive Approach for Dealing with Variations

- Adaptive Body Bias (ABB) and Adaptive Supply Voltage (ASV)

Source: Sam Naffziger, HP