Announcements

- Homework 4 due next week
- Quiz #4 next Monday
Outline

› Last lecture
 › DVS
 › Clock gating
 › Managing leakage
› This lecture
 › Power gating
 › Body bias

5. Low Power Design
J. Power Gating
Power /Energy Optimization Space

<table>
<thead>
<tr>
<th>Energy</th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td>Logic design</td>
<td></td>
<td>Clock gating</td>
</tr>
<tr>
<td>Scaled V_{DD}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans. sizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-V_{DD}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td>Sleep T’s</td>
</tr>
<tr>
<td>Trans sizing</td>
<td>Scaling V_{DD}</td>
<td>Multi-V_{DD}</td>
</tr>
<tr>
<td>$+ Multi-V_{Th}$</td>
<td></td>
<td>Variable V_{Th}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Input control</td>
</tr>
</tbody>
</table>

Dynamic Sleep Transistor

Active mode

- PMOS forward body bias
- ON: gate overdrive
- Virtual V_{cc}
- Noise on virtual supply
- Virtual V_{ss}

Courtesy of J. Tschanz, Intel (ISSCC'03)
Dynamic Sleep Transistor

Idle mode

- OFF: gate underdrive
- PMOS reverse body bias
- Virtual \(V_{CC}\)
- Virtual \(V_{SS}\)
- Virtual supply collapse

Courtesy of J. Tschanz, Intel (ISSCC’03)

How to Size the Sleep Transistor?

- Don’t need both header and footer
- Circuits in active mode see the sleep transistor as extra power line resistance
 - The wider the sleep transistor, the better
- **Wide sleep transistors cost area**
 - Minimize the size of the sleep transistor for given ripple (e.g. 5%)
- Need to find the worst case vector
- Sleep transistor is not for free – it will degrade the performance in active mode
- Charging and discharging the virtual rails costs energy
- Need to sequentially wake up
Sleep Transistor

High-VTH transistor has to be very large for low resistance in linear region. Low-VTH transistor needs much less area for the same resistance.

<table>
<thead>
<tr>
<th></th>
<th>MTCMOS</th>
<th>Boosted Sleep</th>
<th>Non-Boosted Sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep-TR size</td>
<td>5.1%</td>
<td>2.3%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Leakage power</td>
<td>1450X</td>
<td>3130X</td>
<td>11.5X</td>
</tr>
<tr>
<td>reduction Virtual supply bounce</td>
<td>60 mV</td>
<td>59 mV</td>
<td>58 mV</td>
</tr>
</tbody>
</table>

Courtesy: R. Krishnamurthy, Intel

Sleep Transistor Layout

<table>
<thead>
<tr>
<th>Area overhead</th>
<th>PMOS</th>
<th>NMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMOS</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>NMOS</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

Tschanz, ISSCC’03
Sleep in Standard Cells

<table>
<thead>
<tr>
<th>Schematics</th>
<th>All HVT (hvt_ND2)</th>
<th>All LVT (lvt_ND2)</th>
<th>Footswitch (fs_ND2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perf.</td>
<td>1X</td>
<td>1.5X - 2X</td>
<td>1.4X - 1.8X</td>
</tr>
<tr>
<td>Leakage</td>
<td>1X</td>
<td>70X - 100X</td>
<td>> 1X</td>
</tr>
<tr>
<td>Area</td>
<td>1X</td>
<td>1X</td>
<td>1.25X</td>
</tr>
</tbody>
</table>

Uvieghara, ISSCC’04

Sleep Transistor Grid

No sleep transistor

PMOS & NMOS sleep transistors

Virtual V_{CC}

Virtual V_{SS}

Tschanz, ISSCC’03
Preserving State

- Virtual supply collapse in sleep mode will cause the loss of state in registers
- Putting the registers at nominal VDD would preserve the state
 - These registers leak
 - The second supply needs to be routed as well
- Can lower VDD in sleep
 - Some impact on robustness, noise and SEU immunity
- State preservation and recovery

Register Design

[Mutoh95]
5. Low Power Design

K. Voltage Scaling in Sleep

Power /Energy Optimization Space

<table>
<thead>
<tr>
<th></th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td>Active</td>
<td>Logic design, Scaled V_{DD}</td>
<td>Clock gating</td>
</tr>
<tr>
<td></td>
<td>Trans. sizing, Multi-V_{DD}</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects, Trans sizing</td>
<td>Sleep T’s, Multi-V_{DD}</td>
</tr>
<tr>
<td></td>
<td>Scaling V_{DD}, + Multi-V_{Th}</td>
<td>Variable V_{Th}, + Input control</td>
</tr>
</tbody>
</table>
Leakage vs. Supply

5. Low Power Design
L. Multiple Thresholds
Power / Energy Optimization Space

<table>
<thead>
<tr>
<th>Energy</th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td></td>
<td>Logic design</td>
<td>Scaled V<sub>DD</sub></td>
</tr>
<tr>
<td></td>
<td>Trans. sizing</td>
<td>Clock gating</td>
</tr>
<tr>
<td></td>
<td>Multi-V<sub>DD</sub></td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td>Sleep T's</td>
</tr>
<tr>
<td></td>
<td>Trans sizing</td>
<td>Multi-V<sub>DD</sub></td>
</tr>
<tr>
<td></td>
<td>Scaling V<sub>DD</sub></td>
<td>Variable V<sub>Th</sub></td>
</tr>
<tr>
<td></td>
<td>+ Multi-V<sub>Th</sub></td>
<td>+ Input control</td>
</tr>
</tbody>
</table>

Technology Options

![Normalized currents](image)

- **HP**
- **LP (LOP)**

- Normalized currents: I_{IL, HS, LP}, I_{IL, LP}, I_{IL, HP}, I_{IL}
Using Multiple Thresholds

- Cell-by-cell V_T assignment (not block level)
- Allows us to minimize leakage
- Achieves all-low-V performance

5. Low Power Design
L. Transistor Sizing
<table>
<thead>
<tr>
<th></th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td>Active</td>
<td>Logic design</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td></td>
<td>Scaled V_{DD}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans. sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-V_{DD}</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scaling V_{DD}</td>
<td>Sleep T’s</td>
</tr>
<tr>
<td></td>
<td>+ Multi-V_{Th}</td>
<td>Multi-V_{DD}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variable V_{Th}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Input control</td>
</tr>
</tbody>
</table>

Power /Energy Optimization Space

- **Active**
 - Logic design
 - Scaled V_{DD}
 - Trans. sizing
 - Multi-V_{DD}

- **Leakage**
 - Stack effects
 - Trans sizing
 - Scaling V_{DD}
 - Multi-V_{DD}
 - Variable V_{Th}
 - Input control

Longer Channels

- **35%** longer gates reduce leakage by 35%
- Increases switching energy by 21% with $W/L = \text{const.}$

- Attractive when don't have to increase W (memory)
- Doubling L reduces leakage by 3x (in 0.13um)
- Much stronger effect in 28nm!
- Effect improves with more aggressive devices
5. Low Power Design
M. Multiple Supplies

Power/Energy Optimization Space

<table>
<thead>
<tr>
<th>Energy</th>
<th>Design Time</th>
<th>Sleep Mode</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Logic design</td>
<td>Clock gating</td>
<td>DFS, DVS</td>
</tr>
<tr>
<td></td>
<td>Scaled V_{DD}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans. sizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-V_{DD}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td>Sleep T's</td>
<td>+ Variable V_{th}</td>
</tr>
<tr>
<td></td>
<td>Trans sizing</td>
<td>Multi-V_{DD}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scaling V_{DD}</td>
<td>Variable V_{th}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Multi-V_{th}</td>
<td>+ Input control</td>
<td></td>
</tr>
</tbody>
</table>
5. Low Power Design

N. Dynamic Threshold Scaling
Power /Energy Optimization Space

<table>
<thead>
<tr>
<th>Energy</th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td>Active</td>
<td>Logic design</td>
<td>Clock gating</td>
</tr>
<tr>
<td></td>
<td>Scaled (V_{DD})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans. sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-(V_{DD})</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td>Sleep T’s</td>
</tr>
<tr>
<td></td>
<td>Trans sizing</td>
<td>Multi-(V_{DD})</td>
</tr>
<tr>
<td></td>
<td>Scaling (V_{DD})</td>
<td>Variable (V_{Th})</td>
</tr>
<tr>
<td></td>
<td>+ Multi-(V_{Th})</td>
<td>+ Input control</td>
</tr>
</tbody>
</table>

Dynamic Body Bias

- Similar concept to dynamic voltage scaling
- Control loop adjusts the substrate bias to meet the timing
 - Can be used just as runtime/sleep
- Limited range of threshold adjustments (<100mV)
- Limited leakage reduction (<10x)
- No delay penalty
 - Can increase speed by forward bias
- Energy cost of charging/discharging the substrate capacitance
 - (but doesn’t need a regulator)
Dynamic Body Bias

Active mode
- Forward body bias (FBB)
- Local V_{CC} tracking

Idle mode
- Reverse body bias (RBB)
- Triple well needed

Tschanz, ISSCC’03
Body Bias Layout

- **Sleep transistor LBGs**
- **ALU core LBGs**

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of ALU core LBGs</td>
<td>30</td>
</tr>
<tr>
<td>Number of sleep transistor LBGs</td>
<td>10</td>
</tr>
<tr>
<td>PMOS device width</td>
<td>13 mm</td>
</tr>
<tr>
<td>Area overhead</td>
<td>8%</td>
</tr>
</tbody>
</table>

Total Active Power Savings

(Fixed activity: $\alpha = 0.05$)

- PMOS sleep transistor (1.32V): Max 18%
- Body bias (1.28V): active: FBB, idle: ZBB Max 8%

Power savings for $T_{OFF} > \sim 100$ idle cycles

Reference: 450mV FBB to core with clock gating, 1.28V, 4.05GHz, 75°C
Body Biasing and Variations

- Body biasing with a local control loop can be used to lower the impact of process variations
- Used to limit die-to-die and within-die variations

Normalized Delay vs V_{DD} & V_{TH}

[Sakurai, Kuroda]
Self-Adjusting Threshold-Voltage Scheme (SATS)

low V_{th} → large leakage → SSB ON → deep V_{BB} → high V_{th}

high V_{th} → little leakage → SSB OFF → shallow V_{BB} → low V_{th}

- control V_{th} to adjust leakage current
- compensate V_{th} fluctuation

Substrate Biasing

150nm CMOS technology

Frequency too low
Leakage too high

$P_{max} = 20 \text{ W/cm}^2$

$P_{leak,\text{max}} = P_{max} - \alpha CV^2 f$

$110^\circ C$
$V_{CC}: 1.1V$
$\alpha: 0.05$

Tschanz, JSSC 11/02
Effectiveness of Substrate Bias

Die-to-die variations

- Normalized leakage vs. normalized frequency for Accepted dies: NBB and ABB.
- Frequency Variation:
 - NBB: 4.1%
 - ABB: 0.69%

Within-die variations

- Normalized leakage vs. normalized frequency for Accepted dies: ABB and WID-ABB.
- Frequency Variation:
 - ABB: 0.69%
 - WID-ABB: 0.21%

97% in highest bin
Techniques Summary

- Sleep transistor - up to ~25x leakage reduction
- Standby supply reduction - ~3-4x leakage reduction
- Reverse bias - ~3x leakage reduction
- Standby supply + reverse bias - ~10x leakage reduction

Next Lecture

- Optimal supplies