THE SWARM
at the Edge of the Cloud
– A New Face of Wireless

Jan M. Rabaey
Berkeley Wireless Research Center (BWRC)
Multiscale Systems Research Center (MuSyC)
EECS, University of California at Berkeley

VLSI CIRCUITS SYMPOSIUM, KYOTO, JUNE 15 2011
1990 Question: What Happens to Computers if Wireless Connectivity Becomes Ubiquitous?

The Birth of the Wireless Tablet
The UCB Infopad Project (1992-1996)

[R. Brodersen, ISSCC keynote 1997]
2010 Outcome: The Tablet as Gateway to the Cloud

- Primary intent: interact with the Internet
Mobile data growth
[Source: Cisco VNI Mobile, 2011]

Mobile traffic grew 2.6x in 2010
(nearly tripling for 3rd year)
Driven by Tablets

[J. Rabaey, ASPDAC’08]
1995 Question: What happens if sensors become tiny, wireless, and self-contained?

Smart Dust Components

- Laser diode
- Active beam steering laser comm.
- Analog I/O, DSP, Control
- Power capacitor
- Solar cell
- Thick film battery

1.2 mm

[Courtesy: K. Pister, UC Berkeley]
2010 Outcome: The Unfulfilled Promise of Wireless Sensor Nets

What slowed them down?
(Source: On World)
- Cost savings not yet disruptive
- Reliability
- Energy (battery life)
- Ease of use

Source: On World
Wireless Sensor Nets

What REALLY slows them down:
NO Economy of Scale

Stovepipes, Fragmentation, Non-interoperability, Lack of Virtualization

Industrial automation, smart buildings, renewable energy, data centers, ...

TinyOS, eCOS, LiteOS, Contiki, Arch Rock

802.11x (WiFi), 802.15.4x (Zigbee), 802.15.1 (Bluetooth (LE)), 802.15.6 (WPANs), NFC, ...
Vision 2025

- Integrated components will be approaching molecular limits and/or may cover complete walls
- Every object will have a wireless connection, hence leading to trillions of connected devices,
- Collaborating to present unifying experiences or to fulfill common goals

What will it Enable?
The Birth of the Swarm
The Swarm at The Edge of the Cloud

Mobile Access & Relay

The Swarm

The Cloud

[J. Rabaey, ASPDAC’08]
“Tiny devices, chirping their impulse codes at one another, using time of flight and distributed algorithms to accurately locate each participating device. Several thousands of them form the positioning grid ... Together they were a form of low-level network, providing information on the orientation, positioning and the relative positioning of the electronic jets... It is quite self-sufficient. Just pulse them with microwaves, maybe a dozen times a second ...”

Pham Trinli, thousands of years from now

Vernor Vinge,
“A Deepness in the Sky,” 1999
CyberPhysical Systems
Linking the Cyber and Physical Words

Aka: The Internet of Things, Societal IT Systems, ...
CyberBiological Systems (BioCyber)
Linking the Cyber and Biological Worlds

Examples: Telesurgery, Body-area networks, health diagnostics, drug delivery, brain-machine interfaces, ...
The Age of the “UnPad” (or Pad) *

Computers and mobiles to completely disappear!

The Immersed Human

Real-life interaction between humans and cyberspace, enabled by enriched input and output devices on and in the body and in the surrounding environment

* Term originally coined by BWRC Directors
A Glimpse at the “Unpad”

Courtesy: Corning Glass
“A World Made of Glass”
(http://www.youtube.com/watch?v=iY1Q0bNwXuI)
The Swarm as a Platform

A mediation layer

Resources

Sensors/Input devs
Actuators/Output devs
Networks
Computing

Apps

Home security/emergency
Energy efficient home
Health monitoring
Unpad

Presenting a uniform API to Apps Developers (similar to trends in the Cloud)
The Swarm as a Platform

Operating System (Broad Sense): Environment that
- Presents abstracted vision of hardware to applications
- Dynamically balances application needs versus available resources under time and energy constraints

What makes SWARM-OS different (and hard)?
- Distributed
- Space/context-aware
- Heterogeneous shared (and sparse) resources
- Dynamic
 - Mobility, scope, resources, connectivity, ...

![Diagram of app interactions in a swarm platform](image)
How to Deal with Dynamics
Structured versus ad-hoc?

BOTH OF THE ABOVE!

THE CLOUD

Exploiting the Edge of the Cloud (or The Fog*)
Packs plenty of computation, communication, storage and energy resources
Avoids the overhead of the Cloud

THE EDGE

Not an “OS as usual”
Reactive or opportunistic emergence of capabilities desirable

THE SWARM

Complex distributed control systems combining heterogeneous components under dynamically varying conditions.
The Swarm Opportunity

It’s A Connected World
Time to Abandon the “Component”-Oriented Vision

The functionality is in the swarm!
- There is power in numbers
- Resources can be dynamically provided based on availability

Moore’s Law morphs into Metcalfe’s Law:
Scaling is in number of connected devices,
no longer in number of transistors/chip

[J. Rabaey, MuSyC 2009]
A New Face for Wireless

Need connectivity strategies that get better with increasing numbers!

- Exploit locality/proximity
- Exploit density
- Collaborate!
- Ensure reliability and safety
- Achieve energy-proportionality

Machine-to-machine (M2M) traffic: 40x between 2010 and 2015
Get Better with Large Numbers

Wireless Capacity Doubled Every 30 Months Since 1900 *

Million-fold capacity increase since 1957
25x from wider spectrum,
5x by dividing spectrum into smaller slices,
5x by designing better modulation schemes,
1600x from reduced cell sizes and transmit distance.

Biggest gain in next decade to come from smaller cells!

Message: The Swarm offers an unique opportunity

[M. Cooper, www.arraycom.com]
Exploiting Locality/Proximity

The peer-to-peer opportunity

Internet energy/bit

Wireless peer-to-peer

<table>
<thead>
<tr>
<th>Radio</th>
<th>TX (nJ/bit)</th>
<th>RX (nJ/bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zigbee</td>
<td>185</td>
<td>135</td>
</tr>
<tr>
<td>BT LE</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>Nordic</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>BAN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>60 GHz</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

[R. Tucker, 2009]

[L. Vandeperre, B. Gyselinckx, IMEC-2011]
Exploiting Locality/Proximity

The peer-to-peer challenge
How to know if two nodes are even interested in talking?

Current approach:
- Establish connection
- Register device
- Application detects device
- Application queries

Latency
Energy
Capacity
Overhead

Application
Presentation
Session
Transport (TCP)
Network (IP)
Data link (MAC)
Physical (PhY)

I know the temperature

How’s the weather?
Exploiting Locality/Proximity

The peer-to-peer challenge
How to know if two nodes are even interested in talking?

Recently announced Mac OS X Lion

Dedicated “stovepipe” solutions

AirDrop
Looking for a fast way to share files with people nearby? With AirDrop, you can send files to anyone around you wirelessly — no Wi-Fi network required. And no complicated setup or special settings. Just click the AirDrop icon in the Finder sidebar, and your Mac automatically discovers other AirDrop users within about 30 feet of you. To share a file, simply drag it to someone’s name. Once accepted, the fully encrypted file transfers directly to that person’s Downloads folder.
Exploiting Locality/Proximity

The peer-to-peer challenge
How to know if two nodes are even interested in talking?

Alternative approach:
- Cut through the layers!

Example: Qualcomm FlashlinQ P2P protocol
Physical layer beaconing enables proximity and interest detection
Exploiting Density

The power of collaboration

no-collaboration

multi-hop [Gupta-Kumar00]

Example: mesh network

distributed MIMO [Tse07]

Example: relay network

Efficiency vs Node density n

- Energy: $O(1)$
- Spectral: $O(n^{(d-1)/2})$ for multi-hop, $O(n^{1/2})$ for no-collaboration, $O(n)$ for distributed MIMO.
Enabling Collaboration

Coexistence among legacy and more capable technologies
One of the 4 “Enduring Technical Wireless Challenges” *

What is needed:
A technology-agnostic mediation layer that enables information exchange and cooperation/collaboration among heterogeneous wireless technologies and applications.**

- Open
- Scalable
- Extensible
- Distributed

Feels like … Swarm-OS!

*Spectral crowding in the ISM Band (Bay Area, 2004)

[NRC report on “Wireless Technology Prospects and Policy Options”, 2011]
[Rabaey et al, “Connectivity Brokerage”, 2010]
Large Numbers and Reliability

Humans

• 10-15% of terrestrial animal biomass
• 10^9 Neurons/”node”
• Since 10^5 years ago

Easier to make ants than humans
“Small, simple, swarm”

Ants

• 10-15% of terrestrial animal biomass
• 10^5 Neurons/”node”
• Since 10^8 years ago

[D. Petrovic, UCB – Atheros]
Wireless reliability with many 9’s

- Exploit spatial diversity
- Exploit time diversity
- Exploit frequency diversity
- Exploit redundancy

When properly managed!

[Courtesy, Dust Networks]
Enabling True Energy-Proportionality*

Fundamental efficiency concept:

\[\text{Energy Consumed} \propto \text{Utility Delivered} \]

Not the case in ANY electronic system in use today (e.g. datacenter, computer, wireless LAN)

* Term originally coined by Luis Barroso (Google)
Enabling True Energy-Proportionality

A system responsibility!

What a single node can do:
Change operation point by tweaking continuous or discrete design variables (supply, threshold voltages, power mode)

Limited by operating boundaries (e.g. leakage, max voltage)

What a system can do:
- Trade computation, storage and communication
- Perform remote caching (proxy)
- Enable “true” sleep modes
- ...

A new form of collaboration
The New Face of Wireless ... What it Means for Semiconductor

Wireless platforms that embrace locality, collaboration, agility, reliability and energy-proportionality
In Summary ... The Laws of the Swarm

- In a connected world, functionality arises from connections of many devices.
- A platform vision is essential to enable economy of scale.
- The dynamic nature of the environment, the needs and the resources dictate adaptive solutions.
- Largest efficiency gain obtained by dynamically balancing available resources: computation, storage, spectrum and energy.
- No one wins by being selfish. Cooperation and collaboration are a must.

A truly new face of wireless!
Postscript:
Failure is not an Option!

What an unruly swarm can do ...

ありがとうございます

The contributions and inspirations of the following colleagues are gracefully acknowledged: A. Wolisz, K. Pister, R. Brodersen, E. Alon, G. Kelson, A. Niknejad, B. Nikolic, J. Wawrzynek, P. Wright, D. Tse, A. Parsha, S. Gambini, L. Van de Perre, and B. Gyselinckx. Contributions by the BWRC member companies and the MuSyC and GSRC consortia are truly appreciated. Many thanks to V. Vinge, N. Stephenson, and I. Asimov for providing the true visions!