Announcements

- Project phase 3 final report due Monday
 - Project wrap-up discussion next Tuesday?
- Final exam
 - Tues. Dec. 15th, 5-8pm, Location TBD
 - Review session: Mon. Dec. 14th
- HKN surveys end of class today

Binary Multiplication

\[
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
\times & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
+ & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]

The Array Multiplier

Class Material

- Last lecture
 - I/O Design
 - Power Distribution
- Today’s lecture
 - Multipliers
The M-by-N Array Multiplier: Critical Path

The critical path for a multipliers includes:
- Critical Path 1
- Critical Path 2
- Critical Path 1 & 2

Critical path:

\[t_{\text{critical}} = [(M-1) + (N-2)] + [(N-1) - 1] + t_{\text{out}} \]

Wallace-Tree Multiplier

Partial products:
- First stage
- Second stage
- Final adder

Carry-Save Multiplier

The Carry-Save Multiplier uses a Vector Merging Adder:

\[t_{\text{carry}} = t_{\text{out}} + (N-1) - t_{\text{carry}} + t_{\text{entry}} \]

Multiplier Floorplan

- HA Multiplier Cell
- FA Multiplier Cell
- Vector Merging Cell

X and Y signals are broadcasted through the complete array.

Multipliers – Summary

- Optimization constraints different than in binary adder
 - Once again:
 - Need to identify critical path
 - Find ways to use parallelism to reduce it
 - Other possible techniques
 - Logarithmic versus linear (Wallace Tree Mult)
 - Data encoding (Booth)
 - Pipelining

First glimpse at system level optimization