Why Modeling?

- Analog circuits more sensitive to detailed transistor behavior
 - Precise currents, voltages, etc. matter
 - Digital circuits have much larger “margin of error”

- Models allow us to reason about circuits
 - Provide window into the physical device and process
 - “Experiments” with SPICE much easier to do
Levels of Abstraction

- Best abstraction depends on questions you want to answer
 - Digital functionality:
 - MOSFET is a switch
 - Digital performance:
 - MOSFET is a current source and a switch
 - Analog characteristics:
 - MOSFET described by BSIM with 100’s of parameters?
 - MOSFET described by measurement results?

Detour: Device Corners

- Run-to-run parameter variations:
 - E.g. implant doses, layer thickness, dimensions
 - Affect V_{TH}, μ, C_{ox}, R_{on}, ...
 - How model in SPICE?

- Nominal / slow / fast parameters (tt, ss, ff)
 - E.g. fast: low V_{TH}, high μ, high C_{ox}, low R_{on}
 - Combine with supply & temperature extremes
 - Pessimistic but numerically tractable
 - \rightarrow improves chances for working Silicon
Corner example: V_{TH}

- Corners just shift V_{th}
 - Probably not real
 - (PMOS doesn’t look real anyways)
- Variations probably bigger than reality too
 - Fab wants you to buy everything they make

Why not Square Law?

- Square law model most widely known:
 \[I_{\text{D,sat}} = \frac{1}{2} \cdot \mu_n \cdot C_{\text{ox}} \cdot \frac{W}{L} \cdot (V_{GS} - V_{\text{th}})^2 \]
- But, totally inadequate for “short-channel” behavior
- Also doesn’t capture moderate inversion
 - (i.e., in between sub-threshold and strong inversion)
Square Law Model Assumptions

- Charge density determined only by vertical field
- Drift velocity set only by lateral field
- Neglect diffusion currents ("magic" V_{th})
- Constant mobility
- And many more…

A Real Transistor

- **Gate Electrode**
 - Gate Depletion
 - Quantum Effect
- **Ultra-thin Gate Dielectric**
 - Direct Tunneling Current
 - Quantum Effects
- **S/D Engineering**
 - S/D resistances
 - S/D leakage
- **Retrograde Doping**
 - Body effect
- **Short Channel Effects**
 - Velocity Saturation and Overshoot
 - Source-end Velocity Limit
- **Pocket Implant**
 - Reverse short channel effect
 - Slower output resistance scaling with L
Now What?

- Rely purely on simulator to tell us how devices behave?
 - Models not always based on real measurements
 - Model extraction is hard
 - Models inherently compromise accuracy for speed

- Need to know about important effects
 - So that know what to look for
 - Model might be wrong, or doesn’t automatically include some effects
 - E.g., gate leakage

Output Resistance: CLM

- “Channel Length Modulation”
 - Depletion region varies with V_{ds}
 - Changes effective channel length

- If perturbation is small:
 \[
 I \propto \frac{1}{L - \delta L(V_{ds})} \approx \frac{1}{L} \left(1 - \frac{\delta L(V_{ds})}{L} \right) \rightarrow \frac{I_{ds}}{I_{ds0}} = (1 + \lambda V_{ds})
 \]
Output Resistance: DIBL

• “Drain Induced Barrier Lowering”

• Drain controls the channel too
 • Charge gets imaged – lowers effective V_{th}
 • Model with $V_{th} = V_{th0} - \eta V_{DS}$

Output Resistance: SCBE

• “Substrate Current Body Effect”

• At high electric fields, get “hot” electrons
 • Have enough energy to knock electrons off Si lattice (impact ionization)

• Extra e^{-} - h^{+} pairs – extra (substrate) current
 • Models usually empirical

\[I_{sub} = \frac{A_i}{B_i} I_{ds}(V_{ds} - V_{dsat})_{exp} \left(- \frac{B_i l}{V_{ds} - V_{dsat}} \right) \]
Output Resistance Mechanisms

- All effects active simultaneously
- CLM at relatively low fields
- DIBL dominates for high fields
- SCBE at very high fields

Velocity Saturation

- Drift velocity initially increases linearly with field
- Eventually carriers hit a “speed limit”
- In the limit, $I_D \propto (V_{GS}-V_{th})$
Vertical Field Mobility Reduction

- Mobility actually depends on gate field
 - “Hard to run when there is wind blowing you sideways (into a wall)”

- More technical explanation:
 - E-field pushes carriers close to the surface
 - Enhanced scattering lowers mobility

\[
\mu = \frac{\mu_0}{1 + \theta(V_{GS} - V_T) + \theta_B V_{SB}}
\]

Halo Doping

Source: R. Dutton and C.-H. Choi
Reverse Short-Channel Effect

Sub-Threshold Region

- Current doesn’t really go to 0 at $V_{GS} = V_{th}$
- Lateral BJT:
Weak Inversion Channel Potential

- “Base” controlled through capacitive divider
 \[\delta V_{ch} \approx \frac{C_{ox}}{C_{dep} + C_{ox}} \delta V_g = \frac{\delta V_g}{n} \]

- Non-ideality factor of channel control \(n > 1 \):
 \[n = 1 + \frac{C_{dep}}{C_{ox}} = 1 + \frac{\varepsilon_{dep}}{\varepsilon_{ox}} \]

- \(n \) varies somewhat with bias – const. approx. usually OK

Weak Inversion Current

- Current set by diffusion – borrow BJT equation:
 \[I_{ds} = \frac{W}{L} I_{ds,0} e^{\frac{q(V_{gs}-V_{T})}{n k T}} \left(1 - e^{-\frac{q V_{ds}}{k T}}\right) \]
Operating in Weak Inversion

- Usually considered “slow”:
 - “large” C_{GS} for “little” current drive (see later)

- But, weak (or moderate) inversion becoming more common:
 - Low power
 - Submicron L means “high speed” even in weak inversion

- Not well modeled, matching poor:
 - V_{TH} mismatch amplified exponentially
 - Avoid in mirrors

Moderate Inversion

- Moderate inversion: both drift and diffusion contribute to the current.

- Closed form equations for this region don’t really exist.
Patching Models?

- Have “good” models for weak inversion and strong inversion.
 - Why not just interpolate in between?

- Example (EKV):

\[I_{DS} = \frac{W}{L} \mu C_{ox}(2n) \left(\frac{kT}{q} \right)^2 \left(\ln \left(\frac{1}{1 - e^{\frac{v_{DS} - v_{th}}{2} - \frac{n}{2} V_{DD}}} \right) \right)^2 \left(\ln \left(\frac{1}{1 - e^{\frac{v_{DS} - v_{th}}{2} - \frac{n}{2} V_{DD}}} \right) \right) \]

BSIM

- *Berkeley Short-channel IGFET Model (BSIM)*
 - Industry standard model for modern devices
 - BSIM3v3 is model for this course

- Typically 40-100+ parameters
 - Advanced software and expertise needed to perform extraction
BSIM “Hand Calculation” Model

- Requires many, many, many… assumptions

- Vertical mobility degradation:
 Define: \(u_d = \frac{UA}{I_{ox}} \) mobility degradation coefficient

\[u_d \approx 0.5V^{-1} \text{ for } t_{ox} = 10\text{nm} \]

- Velocity saturation:
 Define: \(E_c = \frac{2V_{sat}}{U/0} \) critical \(E \)-field for velocity saturation

\[E_c \approx 2 \times 10^4 \text{V/cm} \text{ (typical value)} \]

Strong Inversion Current

\[V_{Dsat} = \left(V_G - V_T \right) \left[\frac{1}{1+u_d(V_G - V_T)} \right] \]

\[I_{Dsat} = \mu_0 C_{ox} \frac{W}{L} \left[\frac{1}{1+u_d(V_G - V_T)} \right] \]

\[= I_{Dsat(long)} \left[\frac{1}{1+u_d(V_G - V_T)+\left(\frac{V_G}{E_cL} \right)} \right] \]

\[= I_{Dsat(long)} \left[\frac{1}{1+u_d(V_G - V_T)+\left(\frac{V_G}{E_cL} \right)} \right] \]
Equations of Derivatives

\[
G_{\text{out}} = \frac{I_{\text{Dsat}}}{V_G-V_T} \left[1 + \frac{I_{\text{Dsat}}}{I_{\text{Dsat}\text{(long)}}} \right] = \frac{I_{\text{Dsat}}}{V_G-V_T} \left[1 + \frac{1}{u_d + \frac{1}{E_c L} (V_G-V_T)} \right]
\]

\[
r_{\text{out}} = \frac{2(V_D-V_{\text{Dsat}}) + [1 + u_d (V_G-V_T)](V_G-V_T)}{\mu_0 C_{ox} W P_{\text{CLM}}} \left[1 + u_d (V_G-V_T) \right] L^2
\]

\[
= \frac{(V_D-V_{\text{Dsat}}) + [1 + u_d (V_G-V_T)](V_G-V_T) L}{I_{\text{Dsat}\text{(long)}} P_{\text{CLM}}} \left[1 + u_d (V_G-V_T) \right]
\]

with \(l = \sqrt{3u_d x_f} \)

- Required parameters \(W, L, TOX, U_0, UA, VSAT, VTH0, PCLM, XJ \)

Fitting Results

Comparison between full and simplified model

Parameter detail: TSMC 0.18\(\mu\)m process

\(t_{ox}: 4.1\text{nm}, W=10\mu\text{m}, V_{TH0}=0.39\text{V} \)
Weakness of Model First Derivatives

![Graphs showing model comparison]

“Hand Model” Conclusion

- Even “simple” model is not convenient
 - r_0 is key for gain, but really hard to model
 - Missing important regions such as moderate inversion
- Hand models really best to build intuition
- But for design (i.e., how to choose W, L, etc.):
 - Will learn how to use the simulator as a “calculator”