You should write your results on the exam sheets only. Partial credit will be given only if you show your work and reasoning clearly.

Name: ____________________________

SID: ______________________________

Problem 1 _____ / 13
Problem 2 _____ / 10
Problem 3 _____ / 9
Total _____ / 32
Problem 1 (13 points) Capacitance and SNR

In this problem we will look at optimizing the SNR of the amplifier shown below.

You should use the following assumptions and simplifications to solve this problem:

- The input of the amplifier (V_{in}) is a sinusoid with an angular frequency of ω_{in} and an amplitude of A_{in}.
- The transistor is biased with a fixed $V*$ so that its gain ($g_{m}r_{0}$) is A_{v0}.
- Assume R_s is noiseless, and ignore all capacitors except those shown in the figure.
- You should assume that $1/(r_{o}C_{d}) \gg \omega_{in}$. In other words, $V_{out}(j\omega_{in})/V_{g}(j\omega_{in}) = A_{v0}$.
- Your final answers should be a function of only k, T, γ, ω_{in}, A_{in}, k_{d}, A_{v0}, R_{s}, and C_{gs}.

a) (4 pts) What is the voltage noise variance $\overline{v_{in}^2}$ at the output of the amplifier?

No noise from R_{s}, so just look at output node:

\[\overline{v_{in}^2} = \frac{kT}{C_{d}} \cdot \frac{1}{4r_{o}C_{d}} \]
\[\overline{v_{o}^2} = \frac{kT}{C_{d}} \cdot 8A_{v0} \]
\[\overline{v_{og}^2} = \frac{kT}{C_{gs}} \cdot \frac{8A_{v0}}{k_{d}} \]
b) **(4 pts)** What is the mean-squared signal voltage $\overline{V_{out}^2}$ at the output of the amplifier?

\[
\frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{1 - sR_sC_{gs}}
\]

\[
\left| \frac{V_g(j\omega)}{V_{in}(j\omega)} \right|^2 = \frac{1}{1 + \omega^2 R_s^2 C_{gs}^2}
\]

\[
V_{out} = A_v V_g \quad \overline{V_{in}^2} = \frac{A_v^2}{2}
\]

\[
\overline{V_{out}^2} = A_{v0}^2 \cdot \frac{A_v^2}{2} \cdot \frac{1}{1 + \omega^2 R_s^2 C_{gs}^2}
\]
c) (5 pts) Keeping the V^* of the transistor fixed, what value of C_{gs} maximizes the $\text{SNR} \frac{\overline{V_{out}^2}}{\overline{V_{in}^2}}$ at the output of the amplifier?

\[
\frac{\overline{V_{out}^2}}{\overline{V_{in}^2}} = \frac{A_{vu}^2 \cdot A_w}{(1 - W_{in}^2 R_s^2 C_{gs}^2)} \cdot \frac{C_{gs}}{kT} \cdot \frac{k_d}{8 A_{vu}}
\]

\[
\text{SNR} \propto \frac{C_{gs}}{1 - W_{in}^2 R_s^2 C_{gs}^2} \quad (A_{vu} \text{ does not change with } C_{gs} \text{ since } V^* \text{ is fixed})
\]

\[
\frac{\partial \text{SNR}}{\partial C_{gs}} = \frac{(1 - W_{in}^2 R_s^2 C_{gs}^2) - 2 C_{gs} W_{in}^2 R_s^2 C_{gs}^2}{(1 - W_{in}^2 R_s^2 C_{gs}^2)^2} = 0
\]

\[
1 + W_{in}^2 R_s^2 C_{gs}^2 = 2 W_{in}^2 R_s^2 C_{gs}^2
\]

\[
W_{in} R_s^2 C_{gs}^2 = 1
\]

\[
C_{gs} = \frac{1}{W_{in} R_s}
\]

(i.e., $W_{in} = \frac{1}{R_s C_{gs, opt}}$)
Problem 2 (10 points) Noise

Considering only the noise current from M₃, what is the variance of the differential voltage noise at the output of the amplifier shown below? You can ignore all the rₜ's of the transistors and all capacitors except those explicitly drawn in the schematic. You can assume that M₁ and M₂ are identical (i.e., \(g_{m1} = g_{m2} \)), and you should provide your answers in terms of \(k, T, \gamma, C_L, (g_{m3}/g_{m1}), (\Delta R/R), \) and \(A_{v,nom} = (g_{m1}R) \).

\[V_{o+} = \frac{I_{n3}}{2} \cdot \frac{R+\Delta R}{1+s(R+\Delta R)C_L} \]
\[V_{o-} = \frac{I_{n3}}{2} \cdot \frac{R}{1+sRC_L} \]
\[V_{o,diff} = V_{o+} - V_{o-} = \frac{I_{n3}}{2} \cdot \frac{(R+\Delta R)(1+sRC_L) - R(1+s(R+\Delta R)C_L)}{(1+s(R+\Delta R)C_L)(1+sRC_L)} \]

\[\frac{V_{o,diff}}{I_{n3}} = \frac{\Delta R/2}{s^2 R(R+\Delta R)C_L^2 + sRC_L(2+\frac{\Delta R}{R}) + 1} \]

\[\frac{V_{o,diff}}{I_{n3}} = \frac{4kT \gamma g_{m3} \cdot \frac{\Delta R^2}{4} \cdot \frac{1}{4RCL(2+\frac{\Delta R}{R})}}{\gamma g_{m3} \cdot \frac{\Delta R}{2+\frac{\Delta R}{R}}} \]

So:

\[V_{o,diff} = \frac{kT \gamma A_{v,nom} \cdot \left(g_{m3}/g_{m1} \right) \cdot \frac{(\Delta R/R)^2}{(2+\Delta R/R)}}{4C_L} \]
Problem 3 (9 points) Amplifier Design

\[i_{n_{in},tot}^2 = i_{n_{in},m1}^2 \cdot M^2 + i_{n_{in},m2}^2 \cdot M^2 + i_{n_{in},m3}^2 \]

\[\eta_f = \frac{i_{n_{in},tot}^2}{i_{n_{in},m1}^2 \cdot M^2} = 1 + \frac{i_{n_{in},m2}^2}{i_{n_{in},m1}^2} + \frac{i_{n_{in},m3}^2}{i_{n_{in},m1}^2 \cdot M^2} \]

\[i_{n_{in},m1}^2 = 4kT \delta g_{m1} \Delta \theta \]
\[i_{n_{in},m2}^2 = 4kT \delta g_{m2} \Delta \theta \]
\[i_{n_{in},m3}^2 = 4kT \delta g_{m3} \Delta \theta \]

\[S_0 = \eta_f \left(1 + \frac{g_{m2}}{g_{m1}} + \frac{Mg_{m2}}{M^2 g_{m1}} \right) \]

\[\eta_f = 1 + \left(1 + \frac{1}{M} \right) \cdot \frac{V_n^*}{V_p^*} \]
b) (5 pts) Now let’s look at the stability of this amplifier under feedback using the model shown above (ignore the r_0’s and all capacitors except the ones shown in the model). If the amplifier is placed into unity-gain feedback with a closed-loop bandwidth of ω_{gbw}, what is the maximum M that will provide at least 45° of phase margin? You should provide your answer in terms of ω_{gbw} and the ω_T of the PMOS transistors.

Pole at V_{mirror}: $\omega_{p2} = \frac{g_{m2}}{(1-M)C_{gs2}} = \frac{\omega_T}{(1+M)}$

ω_{p2} is the non-dominant pole.

Dominant pole crosses over at ω_{gbw} ($= \frac{g_{m1}}{C_L}$)

For $\geq 45^\circ$ phase margin want:

$\omega_{p2} \geq \omega_{gbw}$

$$\frac{\omega_T}{1-M} \geq \omega_{gbw}$$

$M \leq \frac{\omega_T}{\omega_{gbw}} - 1$