Noise Variance in a Real Circuit: Sample and Hold

- Noise on the capacitor:
 \[V_c(f) = 4kTf \frac{1}{1+sRC} \]
 \[\Rightarrow V_d = \sqrt{V_c(f)} \frac{f}{kT} = \frac{kT}{C} \]
- So effective bandwidth is:
 \[\Delta f = \frac{\pi f}{4RC} \]
 \[\Rightarrow \Delta f \approx \frac{f}{2} \]

Sampled Signal Signal-To-Noise Ratio

- SNR:
 \[SNR = \frac{P_{sig}}{P_{noise}} \]
- Signal Power (sinusoidal source):
 \[P_{sig} = \frac{1}{2} V_{peak}^2 \]
- Noise Power (assuming thermal noise dominates):
 \[P_{noise} = \frac{kT}{C} n_f \]
- So:
 \[SNR = \frac{\frac{1}{2} CV_{peak}^2}{n_f kT} \]
 \[SNR \uparrow +6dB \]
 \[C \uparrow \times 4 \]

Energy-Based Analysis

dB versus Bits

- Quantization "noise"
 - Quantizer step size: \(\Delta \)
 - Box-car pdf variance: \(S_0 = \frac{S}{12} \)
 - SNR of N-Bit sinusoidal signal:
 \[P_{sig} = \frac{1}{2} \left(\frac{2 \pi \Delta}{2} \right)^2 \]
 \[SNR = \frac{P_{sig}}{S_0} = 1.5 \times 2^{1.8} \]
 \[6.02 \text{ dB per Bit} = \left[\log_{10} \left(0.001 + 6.02 N \right) \right] \text{ dB} \]
SNR versus Power

- 1 Bit \rightarrow 6dB \rightarrow 4x SNR
- 4x SNR \rightarrow 4x C
- Circuit bandwidth \rightarrow $\sim g_m/C$ \rightarrow 4x g_m
- Keeping V^* constant \rightarrow 4x I_D, 4x W

- Thermal noise limited circuit:
 - Each bit QUADRUPLES power!
- Overdesign is expensive
 - Better do the analysis right!
 - Need to know how to get analytical expressions for more general circuits

Important Integrals

\[
\int_0^\infty \frac{1}{1 + \frac{s}{\alpha Q}} \, ds = \frac{\alpha Q}{\sqrt{\alpha^2 + 1}}
\]

\[
\int_0^\infty \frac{x}{\alpha Q} \left(1 + \frac{s}{\alpha Q} \right)^{\frac{1}{2}} \, ds = \frac{\alpha Q}{\sqrt{\alpha^2 + 1}}
\]

\[
\int_0^\infty \frac{1}{\alpha Q} \left(1 + \frac{s}{\alpha Q} \right)^{\frac{1}{2}} \, ds = \frac{\alpha Q}{\sqrt{\alpha^2 + 1}}
\]

Two-Stage Amplifier

Input Equivalent Noise

Equivalent Noise Generators

CS Amplifier

\[
\v_i(t) = \frac{1}{R_k} \left(\frac{2}{R} \left(\frac{R}{R_k + R, C} \right) + \frac{R}{R_k + R, C} \right) \delta(t)
\]

\[
\v_o(t) = \frac{1}{R_k} \left(\frac{2}{R} \left(\frac{R}{R_k + R, C} \right) + \frac{R}{R_k + R, C} \right) \delta(t)
\]

\[
= \frac{2}{R_k} \left(\frac{R}{R_k + R, C} \right) + \frac{R}{R_k + R, C}
\]

\[
= \frac{2 R}{R_k + R, C} + \frac{R}{R_k + R, C}
\]

\[
= \frac{3 R}{R_k + R, C}
\]

\[
\ell_o(t) = \frac{1}{R_k} \left(\frac{2}{R} \left(\frac{R}{R_k + R, C} \right) + \frac{R}{R_k + R, C} \right) \delta(t)
\]

\[
= \frac{2}{R_k} \left(\frac{R}{R_k + R, C} \right) + \frac{R}{R_k + R, C}
\]

\[
= \frac{2 R}{R_k + R, C} + \frac{R}{R_k + R, C}
\]

\[
= \frac{3 R}{R_k + R, C}
\]

\[
\ell_i(t) = \frac{1}{R_k} \left(\frac{2}{R} \left(\frac{R}{R_k + R, C} \right) + \frac{R}{R_k + R, C} \right) \delta(t)
\]

\[
= \frac{2}{R_k} \left(\frac{R}{R_k + R, C} \right) + \frac{R}{R_k + R, C}
\]

\[
= \frac{2 R}{R_k + R, C} + \frac{R}{R_k + R, C}
\]

\[
= \frac{3 R}{R_k + R, C}
\]

Two-Port Model for noisy two-port:
- Noiseless two-port
 - Plus equivalent input noise sources
- In general, ℓ_i and ℓ_o are correlated.
 - Ignore that for now
Finding the Equivalent Generators

- Find v_n and i_n by opening and shorting the input
 - Shorted input:
 - Output noise due only to v_n
 - Open input:
 - Output noise due only to i_n

Optimum Source Impedance

- Can use this to optimize source impedance for minimum added noise from two-port (noise figure):
 $$R_s = \frac{v_n^2}{4kTf} \quad G_s = \frac{i_n^2}{4kTf}$$
 $$R_{opt} = \sqrt{\frac{R_s}{G_s}} = \sqrt{\frac{v_n^2}{i_n^2}}$$

Role of Source Resistance

- If R_s is large:
 - Design amplifier with low i_n (MOS)
- If R_s is low:
 - Design amplifier with low v_n (BJT)
- For a given R_s, there is an optimal v_n/i_n ratio
 - Alternatively, for a given amp, there is an optimal R_s

Correlated Noise Sources

- Partition i_n into two components:
 - Correlated (“parallel”) to v_n
 - Uncorrelated (“perpendicular”) to v_n
- Can use this to re-derive optimum source Z

Total Output Noise

- $\Delta_i = (\frac{v_n^2}{2} + \frac{i_n^2}{2}) + \left(\frac{R_{in}}{R_{in} + R_s} \right)^2 \left(\frac{R_{in}}{R_{in} + R_s} \right)^2 \frac{v^2}{2} + \left(\frac{R_{in}}{R_{in} + R_s} \right)^2 \frac{i^2}{2}$

Loose Ends: Sampled Noise Spectrum

- What if RC doesn’t completely settle every cycle?
 - Noise between samples correlated \rightarrow spectrum not white
 - If $Tr > 3$, correlation small
 - Sampled spectrum white
 - In practice usually the case
Loose Ends: Periodic Noise Analysis

SpectreRF PNOISE: check
noisetype=timedomain
noisetimepoint=[...]
as alternative to ZOH,
noisaskipcount=large
might speed up things in this case.