Bias Current Sources

- What makes a current source a current source?
 - High output impedance

- Other important properties:
 - Voltage range \(V_{\text{max}} \)
 - Noise
 - Accuracy

- Techniques: cascoding, gain boosting

Bias Current Source

- Is this a “good” bias current source?

Current Mirror

- Better approach: current mirror

Noise

\[
\begin{align*}
I_0 & = I_i + M' I_i \\
& = 4kT (g_{m1} + M' g_{m1}) I_i \\
& = 4kT g_{m1} (1 + M) I_i \\
& = 4kT \frac{V_G}{R} I_i
\end{align*}
\]

- M2 adds noise
 - Choose small M (power), or
 - Filter at gate of M1

- Current source FOMs
 - Output resistance \(R_o \)
 - Noise resistance \(R_n \)
 - Active sources boost \(R_o \), not \(R_n \)

Noise cont’d

\[
R_o = \frac{1}{g_{m1} (1 + M)}
\]

- \(R_o \) from transistor current source much larger than real \(R \) with same output impedance

- So why do we use transistors as current sources?
V_{\text{min}} versus Noise

- Voltage required for large r_p ("saturation"): $V_{\text{min}} \sim V^*$
- Minimum noise (for given I_p):
 - large R_p
 - large V^* (and, hence, V_{min})
- Eats into signal swing...

Bipolar’s, GaAs, …

\[R_p = \frac{1}{2g_m(1+M)} \]

\[V_{\text{min}} = \frac{V_{sat}}{2^M + 1} \]

\[R_e = \frac{2}{\alpha T} \]

- Increasing R_e lowers noise
- Same in MOS, BJT, etc.
- V_{min} always trades with noise
- Lowest possible noise: resistor (large V_{min})

Cascoding

Output Resistance

\[R_{\text{out}} = f(k) \]

\[V_{\text{OSS}} = kV^* \]

How to choose k?
- Large k useful only for large V_{min}
- But, little penalty for large k and small V_{min}
 - Typically choose $k>1$
 - Get benefit if V_{min} is big

High-Swing Cascode Biasing

- Need circuit for generating V_{bias2}
- Accuracy important for high V_{sat}/high R_o
 - In practice, not quite as critical (V_{sat} often low)
- Assume you’ve seen these before
 - Review G & M if not
High-Swing Bias Example

Gain Boosting
- Use feedback to further increase R_{out}
- No increase of V_{min} (unlike double cascode)

Local Feedback and Stability

Gain-Boosted Z_{out}

Pole-Zero Doublets

If it works, do it again!
- Since in advanced scaled CMOS $g_m r_f$ is small, we can use nested gain boosting for higher output impedance.
- Watch out for pole-zero doublets!
Noise Analysis

Noise Summary

Cascode Sizing

\[V_{th} \rightarrow I_c \rightarrow \text{small } V_{RF} \]

\[V_{in} \rightarrow I_c \rightarrow \text{larger } V_{RF} \]