Simplest Single-Ended OTA

\[a_{\text{in}} = \frac{dV_{\text{out}}}{dV_{\text{in}}} \]

\[A_{\text{in}} = \frac{V_{\text{out}} - V_{\text{out,\text{ref}}}}{V_{\text{in}} - V_{\text{in,\text{ref}}}} \]

Small Signal: \(a_{\text{in}} \)

Large Signal: \(A_{\text{in}} \)

Frequency Response

\[\frac{V_{\text{out}}}{V_{\text{in}}} = 4kT \frac{1}{K_{\text{in}}} \left(g_{\text{in}} + g_{\text{out}} \right) \]

Noise

\[\frac{V_{\text{noise}}^2}{M} = 4kT \frac{1}{K_{\text{in}}} \left(g_{\text{in}} + g_{\text{out}} \right) \]

\[= 4kT \frac{1}{K_{\text{in}}} \left(1 + \frac{g_{\text{out}}}{K_{\text{out}}} \right) \]

\[= 4kT \frac{1}{K_{\text{in}}} \left(1 + \frac{g_{\text{out}}^2}{K_{\text{out}}^2} \right) \]
Differential Input?

- Why use a differential input?
 - Diff. version has extra device(s) – more power, noise, etc.
 - Real reason is systematic offset
 - All voltages are relative
 - Inherent asymmetry to get single-ended V_{out}
 - "common-mode" sensitivity

Fully Differential Circuits

- Fully differential circuits: complete symmetry
 - $V_{id} = V_{ic}$, $V_{o+} = (V_{o+} + V_{o-})/2$
 - Still need to be careful with common mode

PSRR, CMRR, …

- All "terminals" are inputs
 - May not be a node in the circuit – could be e.g. temperature

- Typical metrics: CMRR, PSRR
 - Careful with how you use these

Fully Differential Amplifier Gains

- A_{dm}
- A_{dcm}
- A_{cm}

Differential Input Stage Options

- (a) (b) (c)