Problem with Common-Mode Feedback

- What if $I_L < I_{tail}/2$?
 - Will capacitive feedback solve this?

- Typical solution: Common-mode feedback
 - Sense CM at output
 - Adjust some knob to alter CM
Common-Mode Sensing

• Simplest CM sensor: pair of resistors

• Resistors load the OTA (reduce gain)
 • If make R large, get slow V_{cm} tracking
 • Is this a problem?

Sensing Scheme #2

• Isolated CM sensing
 • Works reasonably well
 • But hard to use with wide swing amplifier output
Capacitive Sensing

- Capacitive sensing avoids DC loading
 - (still creates AC load though)
- Needs to be reset to remove initial offset
 - Just like capacitive feedback

Adjusting Common-Mode

- Really only two knobs:
 - Knob A: adjust load current
 - Knob B: adjust tail current
Example Common-Mode Feedback

- Secondary amplifier enforces $V_{cm} = V_{cm_ref}$
- Place dominant pole at V_{bp}, or V_{cm}?

CMRR Fix

- What if two PMOS transistors aren’t perfectly matched?
Capacitive CMFB

- How to choose C_{cm}?
 - “Small”: CM loop gain low
 - “Large”: Loading on diff. output high

Initialization
“Continuous” CMFB