Announcements

› Homework 2 due next week
› Quiz #1 today
Outline

- **Last lecture**
 - SRAM operation, static margins
- **This lecture**
 - Finish static margins,
 - Dynamic margins
 - Start assist techniques

SRAM

C. Static Read/Write Margins (continued)
Write Stability – Write Noise Margin (WNM)

- Writeability is becoming harder with scaling
- Optimizing read stability and writeability at the same time is difficult

A. Bhavnagarwala, IEDM 2005

Write Stability – BL/WL Write Margins

- Highest BL voltage under which write is possible when BLC is kept precharged
- Difference between VDD and lowest WL voltage under which write is possible when both bit-lines are precharged
Write Stability – Write Current (N-Curve)

- Minimum current into the storage node

C. Wann et al, IEEE VLSI-TSA 2005

The Conflict Between Read and Write

READ - OPTIMIZED SYSTEM
WRITE - OPTIMIZED SYSTEM

H. Pilo, IEDM 2006
6-T SRAM Static/Dynamic Stability

- **Read Margin**
 - SNM: pessimistic
- **Write Margin**
 - WNM: optimistic
- **Introduction to dynamic margins**
Dynamic Write Stability

\[T_A < T_{\text{write}} < T_B \]

- \(T_{\text{write}} \) = dynamic write stability
- Static margins are optimistic

Khalil, TVLSI '08

Dynamic Read Stability

\[T_A < T_{\text{read}} < T_B \]

- \(T_{\text{read}} \) = dynamic read stability
- Static margins are pessimistic

Khalil, TVLSI '08
Dynamic Read Access

- \(T_A < T_{\text{access}} < T_B \)
- \(\text{PD}_1 \) and \(\text{PG}_1 \) are critical

Khalil, TVLSI '08

\[\text{V}_{\text{Th}} \text{ Window} \]

- Assuming global spread

Yamaoka, ISSCC'05
E. Assist Techniques

Peripheral Circuits to Help SRAM

- Write assist techniques
- Read assist techniques
- Redundancy
- ECC
Multi-Voltage SRAM

<table>
<thead>
<tr>
<th></th>
<th>Read</th>
<th>Write</th>
<th>Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periphery</td>
<td>Vmin</td>
<td>Vmin</td>
<td>Vmin</td>
</tr>
<tr>
<td>BL Precharge</td>
<td>Vmin (H)</td>
<td>Vmin (L)</td>
<td>Vmin</td>
</tr>
<tr>
<td>WL</td>
<td>Vmin</td>
<td>Vmax</td>
<td>N/A</td>
</tr>
<tr>
<td>Cell V_{DD}</td>
<td>Vmax</td>
<td>Vmin</td>
<td>Vmin</td>
</tr>
</tbody>
</table>

Array Adjustments

Array back bias, to compensate for systematic variations

May be useful in technologies with strong body effect

S. Mukhopadhyay, VLSI 2006
Dynamic V_{DD} Implementation

- VCC selection is along column direction to decouple the read & write

Zhang, ISSCC’05

Floating VDD Technique

- W/o second supply

Yamaoka, ISSCC’04
Collapsing V_{DD} Technique

Collapsing V_{DD} Technique
Negative BL

Nii, VLSI’08

Negative bias gen

Negative BL

Arsovski, ISSCC’11
BL Stability Assist

Arsovski, ISSCC’11

WL Underdrive

Sensing appropriate WL voltage

Carlson, CICC’08

Nho, ISSCC’10
Capacitive Write Assist

S. Ohbayashi, VLSI 2006

Write/Read Assist

H.Pilo, VLSI 2006
Pulsed WL/BL

Next Lecture

› Continue with SRAM