EE241 - Spring 2013
Advanced Digital Integrated Circuits

Lecture 18: Dynamic Voltage Scaling

Announcements

- Homework 3 due today
- Quiz #3 today
Reading

Outline

› Last lecture
 › Power-performance tradeoffs at circuit level
 › Tradeoffs through supply voltage

› This lecture
 › Multiple supplies
 › Dynamic voltage scaling
5. Low Power Design
F. Multiple Supplies

<table>
<thead>
<tr>
<th></th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td>Active</td>
<td>Logic design</td>
<td>Clock gating</td>
</tr>
<tr>
<td></td>
<td>Scaled V_{DD}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans. sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-V_{DD}</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td>Sleep T's</td>
</tr>
<tr>
<td></td>
<td>Trans sizing</td>
<td>Multi-V_{DD} Variable V_{Th}</td>
</tr>
<tr>
<td></td>
<td>Scaling V_{DD}</td>
<td>+ Input control</td>
</tr>
<tr>
<td></td>
<td>+ Multi-V_{Th}</td>
<td></td>
</tr>
</tbody>
</table>
Reducing Active Power

- Downsizing, lowering the supply on the critical path will lower the operating frequency
- Downsize (lowering supply) non-critical paths
 - Narrows down the path delay distribution
 - Increases impact of variations

Multiple Supply Voltages

- Block-level supply assignment
 - Higher throughput/lower latency functions are implemented in higher V_{DD}
 - Slower functions are implemented with lower V_{DD}
 - Often called “Voltage islands”
 - Separate supply grids, level conversion performed at block boundaries
- Multiple supplies inside a block
 - Non-critical paths moved to lower supply voltage
 - Level conversion within the block
 - Physical design challenging
Leakage Issue

Driving from V_{DDL} to V_{DDH}
Level converter

Multiple Supplies in a Block

Conventional Design
CVS Structure

Lower V_{DD} portion is shaded
“Clustered voltage scaling”

M. Takahashi, ISSCC’98.
Multiple Supplies in a Block

CVS

Layout:

Level-Converting Flip-Flop

Usami'98
From Two to Three V_{DD}'s

From Kuroda

$V_1 = 1.5V$, $V_{TH} = 0.3V$, $\rho(t)$: lambda

Optimum Numbers of Supplies

The more V_{DD}'s, the less power, but the effect will be saturated.

Power reduction effect will be decreased as V_{DD}'s are scaled.

Optimum V_2/V_1 is around 0.7.

Hamada, CICC'01
5. Low Power Design
G. Dynamic Voltage Scaling

Power /Energy Optimization Space

<table>
<thead>
<tr>
<th></th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td>Active</td>
<td>Logic design</td>
<td>Clock gating</td>
</tr>
<tr>
<td></td>
<td>Scaled V_{DD}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans. sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-V_{DD}</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td>Sleep T's</td>
</tr>
<tr>
<td></td>
<td>Trans sizing</td>
<td>Multi-V_{DD} Variable V_{Th}</td>
</tr>
<tr>
<td></td>
<td>Scaling V_{DD}</td>
<td>+ Input control</td>
</tr>
<tr>
<td></td>
<td>+ Multi-V_{Th}</td>
<td></td>
</tr>
</tbody>
</table>
Adaptive Supply Voltages

Exploit Data Dependent Computation Times To Vary the Supply

from [Nielsen94]

(IEEE Transactions on VLSI Systems)

Processors for Portable Devices

- Eliminate performance ↔ energy trade-off
Typical MPEG IDCT Histogram

Number of IDCTs per Frame

Frequency of Occurrence

0.00 0.02 0.04 0.06

0 500 1000 1500 2000

Processor Usage Model

Desired Throughput

Compute-intensive and low-latency processes

Maximum Processor Speed

SystemIdle

Background and high-latency processes

System Optimizations:
• Maximize Peak Throughput
• Minimize Average Energy/operation
Common Design Approaches (Fixed VDD)

- **Compute ASAP:**
 - Delivered Throughput
 - Always high throughput
 - Excess throughput

- **Clock Frequency Reduction:**
 - f_{CLK} Reduced
 - Energy/operation remains unchanged while throughput scaled down with f_{CLK}

Scale V_{DD} with Clock Frequency

- Constant supply voltage
- $\sim 10x$ Energy Reduction
- Reduce V_{DD}, slow circuits down.

Chart:
- Throughput ($\propto f_{CLK}$)
- Energy/operation
- $1.1V$ vs $3.3V$
CMOS Circuits Track Over V_{DD}

Delay tracks within +/- 10%

Dynamic Voltage Scaling (DVS)

1. Vary f_{CLK}, V_{DD}
2. Dynamically adapt

- Dynamically scale energy/operation with throughput.
- Always minimize speed \rightarrow minimize average energy/operation.
- Extend battery life up to 10x with the exact same hardware!
Operating System Sets Processor Speed

- DVS requires a voltage scheduler (VS).
- VS predicts workload to estimate CPU cycles.
- Applications supply completion deadlines.

\[\frac{\text{CPU cycles}}{\Delta \text{time}} = F_{\text{DESIREDE}} \]

Converter Loop Sets V\text{DD}, f\text{CLK}

- Feedback loop sets V\text{DD} so that \(F_{\text{ERR}} \rightarrow 0 \).
- Ring oscillator delay-matched to CPU critical paths.
- Custom loop implementation → Can optimize \(C_{\text{DD}} \).
Next Lecture

› Continue DVS