Administrative

- Elad will be out of town this Thurs.
 - Make-up lecture will be held on Mon. 1-31 1:30-3:00pm in 127 Dwinelle
 - Office hours on Thurs. cancelled – available over email
Plain Old Inverters – Why Not?

Outline

- Signaling Basics
 - Single-ended vs. differential
 - “Current-mode” vs. “Voltage-mode” signaling
 - Termination

- TX Circuit Design
 - Z control
 - CML, VM drivers
 - Power vs. swing
 - Serialization options

- RX Circuit Design
 - Comparator review
 - Deserialization options
Single-Ended Signaling

- **RX**: comparing against a shared reference
 - Reference may be implicit (i.e., ground/supply)
 - Mismatch between shared and individual lines
- **TX**: generates large variations on power supply
 - SSO – simultaneous switching outputs
- **No XTALK immunity**

So Why Even Mention This?
Classic Debate

- “Differential must be twice as fast as single-ended in order to win”

- Reality more complicated
 - E.g., power supply to signaling pin ratio higher in S.E.

- Short “answer”
 - Differential a lot easier to build and get right the first time
 - Can make S.E. work – but often a lot more painful

“Voltage-Mode” vs. ”Current-Mode”

- Transmission line has both voltage and current...
- Terminology unfortunately heavily overloaded
 - Whether or not Zo of driver is high
 - How Zo of driver is set
 - What sets output swing
"Voltage-Mode" vs. "Current-Mode"

Another View

<table>
<thead>
<tr>
<th></th>
<th>"Low Impedance"</th>
<th>"High Impedance"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Ended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_s/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- RX opposite of TX
- Signal integrity implications?
Why Terminate?

External vs. Internal Termination

- **Internal**: makes package L, pad C part of T-line
- **External**: chip/package become a stub
 - If want on-die term need to control its value…
Untrimmed Poly Termination

- Main issue is variation: +/-20% at one temperature
- But
 - It’s relatively linear
 - ESD robust
 - Low parasitics...

Ri, Ci, and Pad Complexity

- LPF at pad can dominate overall channel
- Example: 500fF ESD, 500fF driver, 500fF wire
 - Bandwidth ~4GHz with double-terminated link
- Even worse in busses (or if add big series R)...
Active Terminations

AC vs. DC Termination

- With diff. can terminate to complement
 - High Z \rightarrow lower power
 - See more shortly

- TX sets common-mode
 - Can be inconvenient
 - May need wide CM range

- AC-coupled + AC-term
 - Places some requirements on data though
TX Design: Series vs. Parallel Termination

Alphabet Soup

• LVDS, CML
• GTL, GTL+, RSL, ...

• VM, CM
• HCM, LCM

• All same basic principles
 • Look at two representative circuits to understand some of the more fundamental tradeoffs
CML TX + RX Term

Double-terminated on-chip

Side Note: Pre-Driver
CML Power Consumption

Differential VM TX + RX

- Main motivation: can reduce power for same swing/supply
Simplified Model And Power

Bad News: Extra Complexity

- Driver impedance (termination) now set totally by devices
 - Some sort of impedance control is critical

- “High-swing” driver:
Low-Swing VM Driver

- Old standards often required large swings (>1V diff. p2p)
 - More modern designs use much lower swings (~200-400mV diff. p2p) to save power

- Low-swing VM driver:

Impedance Control
Another Approach

Serialization: Input vs. Output

- On-chip clocks often slower than off-chip data-rates
 - Need to take a set of parallel on-chip data and serialize it

- Can serialize either at input of TX or at final output
Serialization: Input vs. Output

• Input ser. requires on-chip circuitry to run at full line rate
 • May lead to high power consumption
 • In older technologies (0.35um) was hard to support high-freq. clocks

• Output ser. noved burden at pad
 • At the time was highest BW

• Limit in both designs: edge rate
 • Either for the clock or for the data

Basic TX Final Notes

• Usually need many peripheral controls
 • Zo, edge-rate, etc.

• Keep tuning out of the high-speed signal path
 • P(High-speed, low res. + low-speed, high-res.) << P(high-speed, high-res.)
Basic TX Final Notes

• Lots of research focused on reduced signaling power
 • I.e., power spent by actual final driver

• Watch out for “overhead” (pre-drivers)
 • Especially with emerging low-swing designs, overhead can actually dominate
 • P_{sig} (400mV diff. p2p):
 • P_{digital} (100 min. sized inverters @ 10GHz):

• More on this later

Basic RX

• Simplest: RX is just a comparator @ f_{bit}
 • (Clocking later)

• Key things to watch out for:
 • High sensitivity (low noise, low offset/hysteresis)
 • Common-mode input range
 • Supply/common-mode rejection
 • Max. clock rate
 • Power consumption
Typical Design

StrongArm Review
Higher Speeds