Administrative

- Elad will be out of town this Thurs.
 - Make-up lecture will be held on Mon. 1-31 1:30-3:00pm in 127 Dwinelle
 - Office hours on Thurs. cancelled – available over email

Outline

- **Signaling Basics**
 - Single-ended vs. differential
 - "Current-mode" vs. "Voltage-mode" signaling
 - Termination

- **TX Circuit Design**
 - Z control
 - CML, VM drivers
 - Power vs. swing
 - Serialization options

- **RX Circuit Design**
 - Comparator review
 - Deserialization options

Plain Old Inverters – Why Not?

- Signaling Basics
- Single-ended vs. differential
- “Current-mode” vs. “Voltage-mode” signaling
- Termination

Single-Ended Signaling

- RX: comparing against a shared reference
 - Reference may be implicit (i.e., ground/supply)
 - Mismatch between shared and individual lines
- TX: generates large variations on power supply
 - SSO – simultaneous switching outputs
 - No XTalk immunity

So Why Even Mention This?
Classic Debate

- “Differential must be twice as fast as single-ended in order to win”
- Reality more complicated
 - E.g., power supply to signaling pin ratio higher in S.E.
- Short “answer”
 - Differential a lot easier to build and get right the first time
 - Can make S.E. work – but often a lot more painful

“Voltage-Mode” vs. ”Current-Mode”

- Transmission line has both voltage and current...
- Terminology unfortunately heavily overloaded
 - Whether or not Zo of driver is high
 - How Zo of driver is set
 - What sets output swing

“Voltage-Mode” vs. ”Current-Mode”

Another View

- RX opposite of TX
- Signal integrity implications?

Why Terminate?

- Internal: makes package L, pad C part of T-line
- External: chip/package become a stub
 - If want on-die term need to control its value...
Untrimmed Poly Termination

- Main issue is variation: +/-20% at one temperature
- But
 - It’s relatively linear
 - ESD robust
 - Low parasitics...

Ri, Ci, and Pad Complexity

- LPF at pad can dominate overall channel
- Example: 500fF ESD, 500fF driver, 500fF wire
 - Bandwidth ~4GHz with double-terminated link
- Even worse in busses (or if add big series R)...

Active Terminations

- With diff. can terminate to complement
 - High Z \rightarrow lower power
 - See more shortly
- TX sets common-mode
 - Can be inconvenient
 - May need wide CM range
- AC-coupled + AC-term
 - Places some requirements on data though

TX Design: Series vs. Parallel Termination

- LVDS, CML
- GTL, GTL+, RSL, ...
- VM, CM
- HCM, LCM
- All same basic principles
 - Look at two representative circuits to understand some of the more fundamental tradeoffs

Alphabet Soup

- LVDS, CML
- GTL, GTL+, RSL, ...
- VM, CM
- HCM, LCM

- All same basic principles
 - Look at two representative circuits to understand some of the more fundamental tradeoffs
CML TX + RX Term

Double-terminated on-chip

Side Note: Pre-Driver

CML Power Consumption

Differential VM TX + RX

• Main motivation: can reduce power for same swing/supply

Simplified Model And Power

Bad News: Extra Complexity

• Driver impedance (termination) now set totally by devices
 • Some sort of impedance control is critical

• “High-swing” driver:
Low-Swing VM Driver

- Old standards often required large swings (>1V diff. p2p)
 - More modern designs use much lower swings (~200-400mV diff. p2p) to save power

- Low-swing VM driver:

Impedance Control

Another Approach

Serialization: Input vs. Output

- On-chip clocks often slower than off-chip data-rates
 - Need to take a set of parallel on-chip data and serialize it

- Can serialize either at input of TX or at final output

Serialization: Input vs. Output

- Input ser. requires on-chip circuitry to run at full line rate
 - May lead to high power consumption
 - In older technologies (0.35um) was hard to support high-freq. clocks

- Output ser. noved burden at pad
 - At the time was highest BW

- Limit in both designs: edge rate
 - Either for the clock or for the data

Basic TX Final Notes

- Usually need many peripheral controls
 - Zo, edge-rate, etc.

- Keep tuning out of the high-speed signal path
 - \(P(\text{High-speed, low res. + low-speed, high-res.}) << P(\text{high-speed, high-res.}) \)
Basic TX Final Notes

- Lots of research focused on reduced signaling power
 - i.e., power spent by actual final driver
- Watch out for “overhead” (pre-drivers)
 - Especially with emerging low-swing designs, overhead can actually dominate
 - P_{sig} (400mV diff. p2p):
 - P_{digital} (100 min. sized inverters @ 10GHz):
- More on this later

Basic RX

- Simplest: RX is just a comparator @ f_{bb}
 - (Clocking later)
- Key things to watch out for:
 - High sensitivity (low noise, low offset/hysteresis)
 - Common-mode input range
 - Supply/common-mode rejection
 - Max. clock rate
 - Power consumption

Typical Design

StrongArm Review

Higher Speeds