CTLE Review

- Generally implemented on RX
 - (Higher Z than TX – less power for same V swing/gain)
CTLE Review: Circuit Design

• Most common design: source-degenerated

Source-Degenerated CTLE In Practice

• Several issues to watch out for
 • Finite input device r_o
 • Tail node r_o, C_{par}
 • Self loading/BW limits
Source-Degenerated CTLE In Practice

• Several issues to watch out for
 • Finite input device r_o
 • Tail node r_o, C_{par}
 • Self loading/BW limits

FIR Equalizer

• Most often implemented at the TX
 • Delay is easy – just need flip-flops

• Typical mixed-signal implementation:
TX FIR Direct Implementation

- FIR coefficients generally not fixed
 - Depend on channel, temp., process, etc.
- Direct approach very flexible
 - But can have high parasitics (self-loading) – especially with large number of taps

Fundamental Problem
Alternate Approach with Min. C_{par}

A Middle Ground

- Partition segments based on knowledge of possible coefficients*

- Tradeoff between
 - $C_{par} \rightarrow$ analog BW, power
 - Digital complexity, power

- “Optimum” point depends on technology, data-rate
 - Generally don’t want to focus on just the end points

What About VM Drivers?